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Spatio-Temporal Segmentation in 3D Echocardiographic
Sequences using Fractional Brownian Motion

Omar S. Al-Kadi, Senior Member, IEEE
An important aspect for an improved cardiac functional analysis is the accurate segmentation of the left ventricle (LV). A novel

approach for fully-automated segmentation of the LV endocardium and epicardium contours is presented. This is mainly based on
the natural physical characteristics of the LV shape structure. Both sides of the LV boundaries exhibit natural elliptical curvatures
by having details on various scales, i.e. exhibiting fractal-like characteristics. The fractional Brownian motion (fBm), which is a
non-stationary stochastic process, integrates well with the stochastic nature of ultrasound echoes. It has the advantage of representing
a wide range of non-stationary signals and can quantify statistical local self-similarity throughout the time-sequence ultrasound
images. The locally characterized boundaries of the fBm segmented LV were further iteratively refined using global information
by means of second-order moments. The method is benchmarked using synthetic 3D+time echocardiographic sequences for normal
and different ischemic cardiomyopathy, and results compared with state-of-the-art LV segmentation. Furthermore, the framework
was validated against real data from canine cases with expert-defined segmentations and demonstrated improved accuracy. The
fBm-based segmentation algorithm is fully automatic and has the potential to be used clinically together with 3D echocardiography
for improved cardiovascular disease diagnosis.

Index Terms—fractional Brownian motion, 3D echocardiography, left ventricle, segmentation, heterogeneity, endocardium

I. INTRODUCTION

THE automatic segmentation of the left ventricle (LV) of
the heart is still considered an open challenge in the field

of medical image segmentation. The interest in understanding
this largest and main pumping chamber of the heart refers
to the key role it plays in blood circulation. Clinicians mainly
assess the extent of heart muscle damage by measuring the LV
ejection fraction [1]. The accurate and reliable segmentation of
the LV shape, and being able to early characterize ischemic
myocardial damage, is an important prerequisite for further
quantitative analysis of cardiac function.

In clinical practice, the segmentation task involves the
delineation of LV endocardium and epicardium contours.
This process, however, is tedious and time consuming and
prone to intra- and inter-observer variability [2]. An automatic
and robust approach for segmenting cardiac ultrasound time-
sequences would highly facilitate the routine clinical work
[3]. Several key challenges in the automated segmentation of
the LV in cardiac ultrasound datasets exist. Namely, speckle
intensity heterogeneity: as in LV cavity (blood pool) due to
blood flow or the dynamic motion of the heart; obscureness:
close proximity of the papillary muscles tend to show speckle
intensities similar to that of the myocardium, and thus affecting
endocardium segmentation; spatial complexity of anatomy: the
separating border between right and left ventricle, and the
low contrast between the myocardium and lung air makes
segmentation of the epicardium especially difficult. Other
factors as partial volume effects due to limited resolution
and inter-variability in shape and speckle intensity of the
heart chambers across patients due to pathology may pose
additional challenges for LV segmentation. To address these
challenges, it is advantageous to have an efficient segmentation
algorithm that is objective and reproducible to accelerate and
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facilitate the process of diagnosis. Regarding ultrasound B-
mode segmentation efforts, the endocardium and epicardium
boundaries are delineated using a variety of strategies. In par-
ticular, statistical models which encode high-level knowledge,
as the parametric or geometric deformable models, can handle
topological changes robustly [4]–[7]. However, the boundary
finding process requires a model to be initialized sufficiently
close to the object to converge and is sometimes prone to
local minima. Also, many machine learning approaches were
proposed for voxel-based classification [8], [9], yet the feature
engineering process is not straightforward and computationally
expensive. Taking advantage of labelled data for detecting
data-driven features has drawn increased attention in prior
probabilistic maps [10], [11] and deep learning techniques
[12], [13]. The unsupervised learning by deep networks can
reduce the need for feature engineering – one of the most
time-consuming parts of machine learning practice, and have
recently shown very promising results for improving image
classification and segmentation. However, limited training data
is a common obstacle in the latter techniques, and regular-
ization of the training data with a large amount of human-
annotated data or anatomical models from large datasets is not
always available. A review on ultrasound image segmentation
methods with techniques mainly focusing on B-mode images
can be found in [2]. An intuitive approach would be to
incorporate the spatio-temporal domain for improving struc-
ture and inter-dependencies of the output. Dealing with the
LV segmentation problem from a spatio-temporal perspective
can give further information on the shape boundaries. Due
to the nature of the speckle pattern, it is hard to draw
conclusions about the boarder of the LV from still frames.
Thus, cardiologists usually examine videos of the deformation
of the LV wall during the echocardiographic examination. It
is logical to assume the speckle pattern structure is better
localized when the spatio-temporal coherence is considered. In
this regard, Huang et al. exploits the spatio-temporal coherence
of individual data for cardiac contour estimation [14]. Others
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embarked on introducing temporal consistency in the tracked
speckle pattern using optical flow [15] or gradient vector flow
approach [16]. Nevertheless, the spatio-temporal structures of
the speckle patterns are usually stochastic in nature. Neglecting
the inherent heterogeneity might not characterize the structure
in space and time efficiently. The fractional Brownian motion
(fBm), which is a non-stationary stochastic process, integrates
well with the stochastic nature of ultrasound echoes [17].
It has the advantage of representing a wide range of non-
stationary signals and can quantify statistical self-similarity in
time-sequence ultrasound images.

To address the aforementioned challenges, we present a
novel physically motivated stochastic model for improved
epicardium and endocardium boundary segmentation. To our
knowledge, this is the first time a spatio-temporal fBm process
is used for LV segmentation in 3D ultrasound sequences. Mo-
tion roughness, reflected in the speckle pattern, is characterized
by fBm for local boundary delineation – which is theoretically
invariant to intensity transformations [18]. Using second-order
moments for LV shape global information complements the
local characterization of the fBm process.

The direct delineation of the endocardium boundaries is
challenging, even for the trained eye, where poor edge infor-
mation result in some regions becoming obscured, as in the
case of the upper left region of Fig. 1(a). The 3D shape mod-
eling using surface parameterization in Fig. 1(b) naturally re-
flects the physics of the LV wall motion and clearly highlights
the blood pool and its associated myocardium boundary. The
similarity between speckle patterns is evaluated by analyzing
their statistical behavior, in particular, by measuring voxel-by-
voxel the distance between their statistical distributions. Con-
text around each voxel of interest is found and optimized in a
pair-wise pattern detection approach. The fBm herein serves
as a similarity criterion to identify such patterns. The self-
similarity between the endocardium voxel patches – quantified
as changes in specular reflections – appear more prominent
in the generated fBm parametric image. Similarly applies to
the region inside the left ventricular cavity where the speckle
patterns are considered more homogeneous. By incorporating
the spatio-temporal coherence, an effective segmentation can
be achieved. The derived fractal dimensions would reflect the
spatio-temporal coherence of the LV boundaries that exhibit
natural elliptical curvatures. In this context, the fBm process
would adapt to both myocardium and ventricular cavity struc-
tures that have sufficient spatio-temporal coherence of varying
scale speckle patterns.

In this paper, we introduce a fully-automatic method for
robustly segmenting the endocardium and epicardium surface
from 3D cardiac ultrasound sequences. In Section II, a 3D
stochastic fractal model approach using surface parameteriza-
tion is adopted for capturing the complex anatomical struc-
ture of the LV (see subsection II-B). Both local and global
information of the LV shape boundaries are characterized
with improved precision (see subsection II-D). Experimental
results are reported in Section III. Interpretation and analysis
of the results – with suggestions to future directions, and
summary of major findings are discussed in Sections IV and V,
respectively.

Fig. 1. B-mode cardiac ultrasound image of a canine subject showing (a) the
left ventricle, (b) corresponding fractional Brownian motion surface image,
and (c) 3D reconstruction and projections in different planes. Individual voxels
with green-like color represent radial strain during end-systole.

II. METHODOLOGY

This sections describes a method for improving LV segmen-
tation, namely, endocardium and epicardium boundaries in 3D
cardiac ultrasound time series data.

A. Automatic Initialization

Formally, let Γ × τ ⊂ R2 × R be the acquisition space-
time of the reference time-series of images I , I : Γ×τ → R,
(x, t) 7→ I(x, t). The fBm segmentation maps F , representing
the fractal dimension computed for each voxel in each 2D
slice (derived in subsection (II-B)), is a combination of a
spatial transformation x′ = Fspace(x, t) and a temporal
transformation t′ = F time(x, t). We make the reasonable
assumption that the temporal transformation F time is only
time dependent : t′ = F time(t). The initialization method
only requires to store a database with sample patches describ-
ing the possible variations found in LV ventricular cavity and
myocardium. The left ventricular cavity is divided into a stack
of ellipsoidal-like discs (conducted on average ∼ 35 images
per sequence). A two-step postprocessing stage is applied
to local information: the first step is aimed at filling voxel
gaps in segmented ventricular cavity, while the second step
is aimed at removing falsely detected isolated myocardium
voxels, cf. subsection III-C. Techniques such as thresholding,
mathematical morphology and correlation are combined for
this purpose. Then the method entails the identification of base
slice centroid acting as a reference for the fBm segmented LV
on 3D echocardiography over time. The centroid is tracked
throughout the entire fBm segmented left ventricular cavity,
where the local shape and orientation varies as the elliptical
model parameters are computed towards the apex. This is
iterated twice for the endocardium and epicardium boundaries.
The volume of the left ventricular cavity represents the sum of
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Fig. 2. Multiscale parametric mapping based on fractional Brownian motion
(B̃H ) for voxel-based segmentation. (a) Object G having a spatial support
v1,1× vmG,nG in source image fx,y , and (b) constructed fractal parametric
voxel map Fh with scaling factor r at different scales (j), s.t. each parametric
value represents a localized Hurst index (h).

the volumes of each of these disks. The volume of each disc
is calculated as the cross-sectional area of the disc multiplied
by its height.

B. Fractional Brownian Motion

Brownian motion B(t) is a Markovian process, whose
conditional transition density function is time-homogeneous.
That is, the probability P of being in state B(t) at time t,
given all states up to time t−1, depends only on the previous
state, B(t−1), at time t−1. Therefore, the prediction of what
states will occur in the future depends only on the current state.
Also, the standard B(t) is a Gaussian process, since it has a
normal distribution with specific first two moments. Based on
the Lagrangian representation, the generalization of a standard
B(t) is a Fractional Brownian motion BH(t), which is a
continuous Gaussian self-similar process in R with stationary
increments [19]. BH(t) can be modeled via stochastic integral
equation, given by

BH(t)−BH(0) =
1

Γ(H + 1
2 )

{ 0∫
−∞

(t− s)H−1/2−

(−s)H−1/2dB(s) +

t∫
0

(t− s)H−1/2dB(s)

}
, (1)

where Γ(x) and B(t) are the gamma function and standard
Brownian motion, respectively, and H ∈ (0, 1) is called
the Hurst parameter or index which describes the scaling
behavior of the process [20] and the roughness of the resultant
motion or trajectory [21]. For our case, H characterizes the
deformation of the left ventricle wall motion, with lower
values leading to a heterogeneous motion and vice versa.
From (1), the standard Brownian motion (also often called
Wiener process) is recovered when H = 1

2 . But in contrast

to Brownian motion, fBm has dependent increments when
H 6= 1

2 . By allowing H to differ from 1
2 , a fBm process is

achieved, where for H > 1
2 increments are positive correlated,

and for H < 1
2 increments are negatively correlated. The

subtracted term (−s)H−1/2 allows the kernel to vanish quickly
when s → −∞, ensuring the convergence of the integral in
the range 0 < H < 1.

There are several ways to estimate the fractal dimension of
a stochastic process modeled by a discrete-time representation
of fractional Brownian motion B̃H [18]. All of them are based
on the formula

E
[
|B̃H(n+ l)− B̃H(n)|

]
= c|l|H , (2)

where c is proportional to the standard deviation σ for l
samples apart. The fBm and power-law variogram fits were
used to estimate H as a measure of self-similarity. Particularly,
the linearly-related H and corresponding fractal dimension
can be calculated from the slope of the average absolute
difference plotted as a function of the increments n with
sampling interval (or step-size) l on a log-log plot. Since H
is a real number with values varying between a random walk
process H = 0 and a smooth process (H = 1), the sampling
interval can be divided by any arbitrary positive value l and
the result rescaled in the ratio lH , cf. property 3 in Appendix
A. Then the new semivariogram will be identical to the initial
one. In this sense B̃H is a self-similar or fractal process. Fig. 2
illustrates the process of constructing a fractal parametric
voxel map Fh for an object G, representing here the blood
pool and associated myocardium boundary, from a source
image fx,y . The resolution for each image slice is investigated
for self-similarity patterns by probing for higher resolutions,
i.e. searching for voxel pair structures ∆v that exhibit self-
similarity at different scales in the range r = 1 . . . j, where
j represents the maximum probed scale. Then the variogram
estimates the mean absolute difference of each voxel pair
E(∆v) to the scaling factor r, such that the resulting localized
Hurst indices {h11, h12, h13, . . . , hmn} ∈ Fh.

The fractal dimension (FD) of an m-dimensional fBm is
related to the Hurst index [18] by

FD = m+ 1−H, (3)

where m is the Euclidean dimension, or the number of
independent variables, and H quantifies the self-affinity of
the process. Therefore, the closer H is to one, the lower
the FD, and the smoother the process becomes and vice
versa. Hence, quantifying how smooth or regular the cardiac
wall motion via fBm might assist in detecting abnormal
left ventricular relaxation and increased stiffness related to
myocardial ischemia and infarction [22].

Finally the regional (or parametric) fractal dimension vol-
ume (F ) is generated for each voxel in the time-sequence ul-
trasound images. In (4), each voxel has its own localized Hurst
index (h) after being subtracted from Euclidean dimension as
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Fig. 3. Illustrative example of different steps of multiscale parametric
mapping based on fractional Brownian motion (B̃H ) for voxel-based seg-
mentation.

in (3), and hence a fractal surface would represent the volume.
The practical implementation is represented in Algorithm 1.

F (i,r) =


hi11L hi12L · · · hi1NL

hi21L hi22L · · · hi2NL
...

...
. . .

...
hiM1L hiM2L · · · hiMNL

 (4)

The volume elements, namely M , N and the coordinate
index for the third dimension L = {l1, l2, . . . , lm, . . . , lz} –
representing the slice position lm in the processed volume Vz ,
are defined for different volumes within the ultrasound time-
sequence i. The scaling factor r = 1, . . . , j is the resolution
limits of F (i,r), which represents the mean absolute intensity
difference to center voxels based on local range dependence,
cf. Fig. 2. The framework as conducted through L voxel-by-
voxel is illustrated in Fig. 3.

C. Classification

Patches of 6.3×8.1×5.4 mm3 – representing myocardium
vs blood pool – were selected randomly from a single ul-
trasound volume transformed to F , and used for training
data. Such that, the training set, ST , is composed of a
set of N patches for which the feature vector V , and the
classification result (C1 or C2: myocardium or blood pool)
are known ST = {V (n),C

(n)
k |n = 1, . . . , N ; k ∈ {1, 2}}.

The Hurst index is a useful statistical method for inferring the
properties of a time series without making assumptions about
stationarity. It is most useful when used in conjunction with
other techniques. Thus, features representing the FD mean
and variance values over F , lacunarity (L) – which defines

Algorithm 1: Fractal parametric voxel map construction
Input: I(x, y, z, i), I: 3D cardiac ultrasound sequences,

in space x, y, z, and time i
1 while i > 0 do /* i:ultrasound time-sequence

*/
2 foreach LV volume V1 → Vz do
3 Step 1: 3D shape modeling using surface

parameterization
4 forall voxels v in cuboid lattice l do
5 Step 2: Initialize self-similarity stochastic

process
6 forall voxel pair distances ∆r in l do
7 Compute mean absolute difference ∆v of

each voxel pair pi, qi;
8 Normalize and take the logarithm

∆v̂ = log
(
∆vimnr/

∥∥∆vimnr

∥∥); /* m,
n and r are size of voxel vi
at certain scale j */

9 Normalize voxel pairs distances ∆r̂;

/* s.t. ∆r̂ =
√∑n

i=1 (qi − pi)2 */

10 Perform least square linear regression as:

Srr =
∑j

s=1 ∆r̂2s −
(∑j

s=1 ∆r̂s

)2
/j,

11 Srv =
∑j

s=1

∑j
k=1 ∆r̂sv̂k −(∑j

s=1 ∆r̂s

)(∑j
k=1 ∆v̂k

)
/j;

12 Step 3: Hurst index H matrix
13 Estimate localized Hurst indices (h):

h = (Srv/Srr); /* local linear
regression */

14 Generate fractal map: Fh[i, r]← 3−H;
/* for time-sequence i and
scaling factor r */

15 end
16 end
17 Estimate surface heterogeneity from Fh[i, r];
18 Construct feature vector for Volume Vk:

λk = {f1i,r, . . . , fki,r, . . . , fzi,r};
19 end
20 i← i− 1
21 end
22 return {Fh,λk};

Output: Fractal parametric voxel map and features
vector {Fh,λk}

the sparsity of the fractal pattern in terms of the ratio of the
variance over the mean of F as in (5) [18]:

L =
1

MNK

∑M
x=1

∑N
y=1

∑K
z=1 F(x)2(

1
MNK

∑M
x=1

∑N
y=1

∑K
z=1 F(x)

)2 , (5)

and higher order statistics, namely, skewness (asymmetry of
the probability distribution) and kurtosis (fourth standardized
moment) are defined over localized histograms derived from
F and normalized to form a 5–D vector in feature space
λ = (f1, f2, . . . , f5). Then in the classification procedure, one
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Fig. 4. Endocardium segmentation: (a) B-mode 2D ultrasound image, (b) corresponding fractal parametric voxel map (c) fBm segmented binary image, (d)
moment-based endocardium region based on enclosing rectangle and (e) ellipsoidal approximation, respectively.

of the classes C1 (myocardium) or C2 (blood pool) would
be assigned to each candidate voxel when its representation
is known. Since our primary concern is to demonstrate the
robustness of the new multiscale parametric mapping based
on fBm, we describe experiments conducted to compare the
discriminative power – which relies naturally on the spatio-
temporal dependencies of the local descriptors – for classi-
fication. A Bayesian classifier, being a simple probabilistic
and commonly used machine learning benchmarking method,
which performs well even with possible presence of dependent
attributes [23] was selected. This particularly suits fractal
patterns in ultrasound images, where not all locally estimated
features are conditionally independent given the class.

The sample training patches were collected from manually
labeled LV (performed by 2 experts to avoid errors due to
ambiguous interpretation of structures) cavity–blood pool and
myocardium voxels in the synthetic and real training images.
Specifically, around ∼ 45200 and ∼ 35000 voxel samples re-
ferring to 62 and 48 voxel patches for the synthetic and animal
dataset, respectively, were fairly divided into myocardium and
blood pool voxel patches and used for training. A total of
62 and 48 sample voxel patches were used for myocardium
training, for synthetic and animal dataset. Similarly applies
for the blood pool training. The training voxels represent
0.41% and 0.29% of the total number of synthetic and animal
dataset test image voxels, respectively. To reduce the risk of
introducing errors, and thus noise in the classification stage,
training samples were carefully selected to cover all possible
regions related to blood pool, endocardium, epicardium, and
myocardium. It is worth noting that the LV segmentation
was performed voxel-by-voxel in 3D by employing a mul-
tiresolution fBm-based kernel operating as a sliding-window
(i.e. cuboid vm×n×r) in a 3D volume sequence (V (i)

M×N×L);
revisit Algorithm 1. This would give smoother segmentation
in homogeneous tissue regions while preserving fine details
in heterogeneous regions, viz. high changes in tissue specular
reflections.

D. Ellipsoidal model assignment to fBm maps

For an improved refinement of the LV contour boundaries,
each of the fBm segmented regions are fitted by means of
image moments to an elliptical model. Moments of images

can provide efficient local descriptors and have been used
extensively in image analysis applications [24], [25]. Their
main advantage is their ability to provide invariant measures
of shape, which can better characterize the heterogeneity of
the LV wall surface.

Image moments can be defined as weighted averages of
voxel intensities. For the time-sequence 3D ultrasound images,
at time t and depth z, the raw (p, q)-moment mp,q for an fBm
segmented object G (LV for our case) is given by:

mpq =

M∑
x=1

N∑
y=1

xpyqf(x, y), (6)

where M and N are the size of a 2D-image slice of a 3D object
G and f(x, y) are the labeled binary output of the calculated
FD values.

The first-order moments m1,0 and m0,1, when normalized
by m0,0 give the coordinates of the binary object – xc and
yc of the endocardium or epicardium. Accordingly, second-
order moments describe the “distribution of mass” with respect
to the coordinate axes and define the orientation θ of G. In
order to extract the parameters of the equivalent ellipse from
the second-order moments m2,0, m1,1, and m0,2, the central
moments can be defined as

µpq =

Ng∑
p,q∈G

(x− xc)p(y − yc)q, (7)

such that

µ2,0 =
m2,0

m0,0
− x2c , µ1,1 = 2(

m1,1

m0,0
− xcyc),

µ0,2 =
m0,2

m0,0
− y2c , (8)

where xc and yc are the coordinates of the centroid c of
G having a size of Ng . These moments are invariants to
translation. Then the covariance matrix of the binary object
would be:

cov(G) =

(
µ2,0 µ1,1

µ1,1 µ0,2

)
and the eigen vectors of this covariance matrix correspond to
the major and minor axes of the equivalent ellipse.
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From (7) the summation extends over all elements in G,
such that µ0,0 represents the area of the pattern, i.e., the
number of white pixels in the middle of Fig .4(c). The
coordinates of the centroid c = (xc, yc) can be calculated
combining µ0,0 with the image moments of the first degree
µ0,1 and µ1,0. The binary image of the equivalent rectangle1

in Fig .4(d) has the same zeroth, first and second moments.
Using the moments of the second degree µ1,1, µ0,2 and µ2,0,
the final formulae giving the major axis orientation θ and the
respective major and minor axis lengths l and w, are calculated
as follows:

θ =
1

2
tan−1

(
2µ1,1

µ2,0 − µ0,2

)
, (9)

l =

√
6
(
µ2,0 + µ0,2 +

√
4µ2

1,1 + (µ2,0 − µ0,2)2
)
, (10)

w =

√
6
(
µ2,0 + µ0,2 −

√
4µ2

1,1 + (µ2,0 − µ0,2)2
)
. (11)

Having these parameters we can infer the equivalent ellipse,
where c was first identified on the fBm segmented LV base
image, and used afterwards for alignment – throughout the rest
of image sequence – towards the apex. Fig .4 illustrates the
above concepts, where a = µ2,0 and b = µ1,1. In this paper,
we employ enclosing elements with dimensions (2w, 2l).

III. EXPERIMENTAL RESULTS

A. Experimental Setup
The framework robustness was validated on five different

synthetic 3D ultrasound sequences simulating normal and
ischemic LV conditions, and furthermore on real 3D cardiac
ultrasound sequences acquired from two canine subjects under
resting-state and stress-state conditions.

1) Synthetic Data
Validation was done on 3D ultrasound time-sequences from

the KU Leuven synthetic dataset [26], representing one normal
and four ischemic cases. Therein, different cases related to LV
healthy and pathological conditions were generated. In the me-
chanical simulations, normal contractility and stiffness values
– according to the standard American Heart Association [27]
– were assigned for the LV normal geometry. The mechanical
parameters were tuned in order to match ejection fraction
measured on the corresponding template acquisition [26].
From the healthy geometry, four ischemic simulations were
generated by altering contractility and stiffness in diseased
segments. The four ischemic simulations corresponded to: a
distal and proximal occlusion of the Left Anterior Descending
artery (LADdist and LADprox respectively); occlusions of
Right Coronary Artery (RCA) and Left Circumflex (LCX).

Each image in the dataset had 224 × 176 × 208 voxels of
size 0.7×0.9×0.6 mm3. On average there were 35 images per
sequence. For each sequence, ground truth motion trajectories
were provided at 2250 mesh points. The endocardium and
epicardium meshes were then converted into segmentation
masks and used for benchmarking.

1The farthest pixel from the centroid of G is specified as the upper-
left corner of the rectangle and perpendicular lines are projected in each
dimension. Then the smallest bounding box enclosing G in f(x, y) is found
iteratively.

Fig. 5. Measuring the discrepancy by means of residual sum of squares –
bright regions indicate higher error –between a 224 × 176 sample cardiac
ultrasound sequence image with a voxel size of 0.7 × 0.9 mm2 (shown in
Fig. 4(a)) and fBm estimation model with different localized range dependence
(2.1× 2.7 mm2, 3.5× 4.5 mm2, 4.9× 6.3 mm2, 6.3× 8.1 mm2, 7.7× 9.9
mm2, 9.1× 11.7 mm2, respectively).

2) Animal Data
3D ultrasound sequence images were acquired from two

acute canine studies (open chested) following a severe oc-
clusion of the left anterior descending coronary artery. A
Philips iE33 ultrasound imaging system (Philips Health Care,
Andover, MA) with a X7-2 probe at 4.4 MHz suspended in
a water bath over the heart was used for image acquisition.
Acquisition time points included baseline and one hour and 6
weeks after surgical occlusion of the left anterior descending
coronary artery. Images typically had 400× 140× 120 voxels
of 0.25 × 0.85 × 0.85 mm3 with an average of 23 temporal
frames. All experiments were conducted in compliance with
the Institutional Animal Care and Use Committee policies.

B. Evaluating Model Goodness-of-Fit

The residual sum of squares (RSS) was used to measure
the discrepancy in the estimated H indices of the parametric
volume maps (F ). A low value indicates the model has a
smaller random error component. Accordingly, the surface of
F was initially estimated using different fBm localized range
dependence by adjusting the range of the scaling factor r in
(4). Higher RSS was encountered in longer range dependence
– i.e. higher resolutions for r; revisit Fig. 3– as the introduced
error may get accumulated due to echo artifacts, and hence
the H estimation becomes unstable. In order to graphically
represent the method estimation discrepancy, as this can give
a better understanding of the relationship between the fBm
model and the surface of the speckle pattern, Fig. 5 shows
where errors most likely occur when locally computing H , and
hence the estimation of F . Selecting the best fBm dependence
range can avoid unnecessary computational time and give
better accuracy.
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Fig. 6. Left ventricle endocardium and epicardium initial segmentation result
for a sample cardiac ultrasound sequence image by varying the localized fBm
dependence range. Best delineation of the endocardium versus epicardium
boundary is shown in (c).

C. Patch size vs localized fBm

The local estimation of the fBm process by indicating
how far the resolution of r can be deeply probed is an
important factor for improving segmentation quality. Unlike
mathematical fractals where they tend to scale infinitely, the
localized fBm dependence range – calculating how deeply
the resolution limits of r can be probed – is essential for
an improved segmentation of LV boundaries. Fig. 6 empir-
ically shows how the H values vary at different fBm local
dependence ranges, with an indication of the best possible
range. To insure consistency, the dependence range has been
varied in Fig. 6 in a similar ratio to how the patch size was
changed. The best localized range that better delineates the
blood pool from the epicardium with the least segmentation
errors is Fig. 6(c). An example of a LV base segmentation
after undergoing fBm stochastic modelling and ellipse fitting
for boundary refinement is illustrated in Fig. 7.

D. Quantitative Evaluation

The proposed fBm segmentation method was benchmarked
using state-of-the-art method in [14], which is based on
employing spatio-temporal coherence under a dynamic ap-
pearance model, abbreviated herein as C-DAM. The evalu-
ation of the segmentation quality was performed using three
different segmentation measures, which are: Dice coefficient
(DC), Hausdorff distance (HD), and mean absolute distance
(MAD), and computed for both end-diastolic and -systolic and
averaged over all cases, see Table I and II. Fig. 8 shows a
slice-by-slice LV epicardium segmentation quality evaluation
corresponding to the DICE metric in Table II. Also the results
of the resting/stress state of the canine dataset showed an
improvement of 2.4%, 0.19mm, 0.37mm and 1.1%, 0.08mm,
0.17mm for the DC, HD, and MAD segmentation quality
metrics of the epicardium and endocardium borders for the
fBm-based as compared to the C-DAM method, respectively.

For clinical relevance, as numerical measures tend to be
more narrowly focused on a particular aspect of the data and

Fig. 7. Segmentation of the left ventricle of the heart from (a) 2D time
sequence ultrasound image demonstrating in (b) and (c) epicardium ground-
truth vs automatic fBm segmentation, (e) and (f) endocardium ground-truth
vs automatic fBm segmentation, respectively. A joint comparison between
ground-truth vs automatic left ventricle fBm segmentation is shown in (d),
where white color means perfect match, while magenta and green refer to
dissimilarity of the ground truth vs automatic fBm segmentations, respectively.
(For qualitative interpretation of segmentation quality, figures (b)-(f) best
viewed in color)

often try to compress information into a single number, the LV
volume segmentation quality is represented as well graphically
in Fig. 9 and Fig. 10 for the synthetic and animal dataset,
respectively. Results show that the method in [14] tends to
over-segment the epicardium boarder by extending into the
surrounding area of myocardium (i.e. LV appearing dilated as
compared to ground truth), and the epicardium surface is more
irregular as compared to the proposed fBm-based segmentation
method, cf. Fig. 9(f) and (k). Also, the mid-ventricular cavity
shows improved delineation in the complex canine dataset
using the fBm-based segmentation method, cf. Fig. 10(g)-(i).
Furthermore, the absolute difference is measured between the
different voxel patches in search for self-similarity properties,
i.e. invariance under a suitable change of scale. It describes
the different statistical distribution variations found in the LV
ventricular cavity and myocardium. To this end, the estimated
fBm local range dependence serves in determining how far the
image resolution can be deeply probed. Terminating the search
at the optimized scaling factor r contributes in improving seg-
mentation of the LV boundaries, and further saves unnecessary
computational time. The implemented fBm algorithm in this
paper had a computational complexity of O(Nlog(N)), with
running time nearly similar for both methods, i.e. around 1
minute per frame. However, the proposed fBm segmentation
method is fully automatic and does not rely on training data.

IV. DISCUSSION

The fBm process is a useful stochastic method for inferring
the properties of a time series without making assumptions
about stationarity. It relates to how strong the autocorre-
lations of the spatio-temporal coherence, and the rate at
which these decrease as the lag between pairs of scatterer
patterns increases. Although it might seem that searching for
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TABLE I
ENDOCARDIUM SEGMENTATION FOR NORMAL AND ISCHEMIC

CARDIOMYOPATHY

Left Ventricle
Condition Method Segmentation Evaluation Metric

DICE (%) HD (mm) MAD (mm)

Normal C-DAM 83.87± 5.79 2.66± 0.16 0.47± 0.16
Our fBm 87.08± 1.63 2.64± 0.13 0.44± 0.07

RCA C-DAM 84.87± 4.43 2.74± 0.22 0.47± 0.12
Our fBm 88.15± 1.87 2.65± 0.17 0.42± 0.08

LCX C-DAM 82.29± 4.00 2.70± 0.14 0.57± 0.12
Our fBm 87.43± 1.40 2.58± 0.10 0.46± 0.07

LADdist C-DAM 84.34± 4.62 2.72± 0.18 0.53± 0.15
Our fBm 83.66± 3.92 2.83± 0.16 0.56± 0.12

LADprox C-DAM 85.82± 3.04 2.76± 0.15 0.44± 0.10
Our fBm 85.18± 2.24 2.76± 0.15 0.48± 0.10

TABLE II
EPICARDIUM SEGMENTATION FOR NORMAL AND ISCHEMIC

CARDIOMYOPATHY

Left Ventricle
Condition Method Segmentation Evaluation Metric

DICE (%) HD (mm) MAD (mm)

Normal C-DAM 90.68± 2.34 2.89± 0.37 0.73± 0.24
Our fBm 91.88± 1.88 2.72± 0.21 0.66± 0.27

RCA C-DAM 87.78± 2.19 2.91± 0.22 0.99± 0.14
Our fBm 92.47± 1.70 2.84± 0.18 0.70± 0.24

LCX C-DAM 88.50± 3.10 2.93± 0.48 1.11± 0.40
Our fBm 92.32± 1.68 2.64± 0.15 0.74± 0.24

LADdist C-DAM 92.72± 1.45 2.80± 0.31 0.61± 0.21
Our fBm 87.98± 3.67 2.92± 0.19 1.02± 0.31

LADprox C-DAM 88.06± 1.92 2.88± 0.18 0.95± 0.06
Our fBm 89.95± 2.21 2.80± 0.28 0.81± 0.24

self-similarity properties by probing for higher resolutions,
i.e. selecting higher values for r in (4), could improve the
segmentation quality, results show that reliable estimate of
H , and hence the F , is valid only at a certain cutoff scale
where there can be no more details. That is, the echo patterns
being approximate rather than deterministic, as the charac-
teristics of the pattern tends to scale in a statistical fashion.
The self-similarity property in this sense means invariance
in distribution under a suitable change of scale r. Therefor
the local linear regression relation for estimating H (revisit
Algorithm 1) becomes non-linear at higher values of r – due to
exceeding the actual resolution of the ultrasound image itself
[28], and eventually resulting in error accumulation. On the
other hand, complementing the self-similarity property of the
fBm process with the lacunarity measure can give a better
characterization of the LV shape heterogeneity. Lacunarity
analysis is a technique introduced to deal with fractal objects
of the same dimension with different textural appearances
[29]. The lacunarity parameter describes the local complexity
of the speckle pattern, on different scales, based on the
spatial distribution of gaps of a specific size. Namely, it is
a measures of the sparsity of the fBm process, providing
additional information on the how irregularity fills the space.

From a clinical perspective, one of the key properties of

Fig. 8. Comparison of slice-by-slice dice coefficient segmentation quality for
fBm and C-DAM [14] in (a) normal, (b) RCA, (c) LCX, (d) LADdist, and
(e) LADprox left ventricle conditions.

the fBm process is that it can exhibit persistence (H > 1
2 )

or anti-persistence (H < 1
2 ). Persistence is the property that

the LV wall motion tends to be smooth, e.g. near to normal.
Anti-persistence is the property that the relative stochastic
process is very noisy, and hence LV wall motion trajectories
tend to be heterogeneous. The latter case is an example of
cardiac ischemia, such that displacements over one temporal
or spatial interval are partially cancelled out by displacements
over another time interval. From Table I, the fBm segmentation
method showed improved performance for nearly all tested LV
endocardium and epicardium deformation conditions except
for the ischemic–LADdist condition. The occlusion of the
distal and side branches could have a negative side-effect
on LV myocardial function, introducing heterogeneity in the
LV wall motion velocity pattern [30]. Therefore the spatio-
temporal structure of speckle patterns could be obscured or
difficult to discern; affecting the fBm stochastic modelling
for LADdist segmentation. Besides the possible presence of
extensive epicardial fat may also complicate the LV seg-
mentation. The endocardium of ischemic–LADprox showed
nearly equivalent performance in both methods. For practical
relevance, results are also demonstrated visually in Fig. 9
and Fig. 10. Improved delineation of the epicardium and
endocardium boundaries can be seen, especially for the LV
base slice.

In the ellipsoidal modelling phase, where the fBm seg-
mented image is combined with the corresponding shape infor-
mation, the relative difference in magnitude of the eigenvalues
w and l are an indication of the eccentricity of the LV. This
gives an elliptical ventricle with a cone-shaped apex rather
than having a round cylindrical-shape. It is known that the
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Fig. 9. 3D segmentation volumes of the left ventricle for 3D echocardio-
graphic sequences illustrating [upper-row] ground truth for normal, ischemic-
RCA, ischemic-LCX, ischemic-LADdist, and ischemic-LADprox; [mid-row]
C-DAM method in [14]; [bottom-row] proposed fully-automated fBm ap-
proach. (Video examples can be referred to in supplementary materials)

contraction of the LV cavity is less symmetrical because of
the systolic increase in wall thickness [31]. A way to view the
LV is to consider it as a composite of adjoining structures;
therefore a circular or elliptical shape at one point may not
represent its entire structure. This can be attributed to the
heterogeneity between the major axis diameter and cross-
sectional area for the different regions of the LV during con-
traction, which is associated with the descent of the base and
rotation of the apex. As the ventricular shape changes from an
elliptical to a more spherical form, the assumption of a uniform
structure of LV that is localized spatially would be misleading.
The 3D spatio-temporal imaging would be advantageous for
assessing the LV shape and size change at specific regions of
interests. The purpose of the fBm-based method is to account
for changes in shape from circular to elliptical as shown in
Fig. 9, where the difference in the major axis diameter from
the apex to the base of the LV is refined by image moments.
Nevertheless, other geometric primitives could be used, as well
as deformable surfaces for improving LV boundary refinement
of the fBm-based segmentation method.

Methods relying on evolving surfaces, e.g. [14], can allow
for flexible topology changes and does not assume a priori
knowledge of object’s shape; however, they cannot effectively
segment surfaces that break apart or intersect – which is a
common condition in ultrasound imaging. Ultrasound image
segmentation is challenging due to the inherent speckle and
presence of artifacts such as shadows, attenuation and signal
dropout. This often leads to missing edges, making it difficult
for such methods to deal with structure discontinuity. Results
in this work support that irregular structure characterization
by locally investigating self-similarity patterns appearing at
different scales using the fBm process can better quantify the
heterogeneity in LV wall motion. The improved localization in
both the temporal and spatial domains gives the fBm approach

Fig. 10. [Left] 3D segmentation of left ventricle for 2 canine subjects
illustrating (a)-(c) manual, C-DAM, fBm in resting state condition, and (d)-
(f) manual, C-DAM, fBm in stress state condition; [Right] comparison of
endocardium segmentation accuracy of LV mid-ventricular cavity in resting
state for (g)-(i) manual, fBm-based, C-DAM, respectively. (For qualitative
interpretation of segmentation quality, figures (g)-(i) best viewed in color)

the advantage of accurate segmentation for fine details, and
possible compensation of edge disconnection. Moreover, the
non-stationarity of the fBm process integrates well with the
stochastic nature of ultrasound echoes.

Finally, due to the nature of how the ultrasound volume
is segmented – i.e. slice-based approach, the current imple-
mentation is not free of several limitations: 1) A disc-like
structure is usually assumed in magnetic resonance (MR)
data due to the imaging limitations for cine MR images.
However, this approach might hamper the segmentation of a
closed myocardium – since true 3D ultrasound segmentation
algorithms as in [9] consider the LV as a closed structure,
although not always assumed as such for the basal side, but
typically for the apex; 2) Previous work has reported that
different 3D echocardiography software packages show vari-
ability when used in predicting response to cardiac resynchro-
nization therapy [32], therefore comparing performance with
similar commercial software packages would be interesting
to investigate; 3) Performing the fBm segmentation based on
the radio-frequency envelope detected echos may better reflect
the intrinsic properties of the myocardium tissue [33], [34],
and assist in overcoming issues related to ultrasound B-mode
settings.

V. CONCLUSION

This work presents a novel method for improving LV
segmentation by addressing the problem of speckle pattern het-
erogeneity, where a) the fBm classification-based segmentation
method relies naturally on the spatio-temporal dependencies
of the local features; b) the 3D sequence of Hurst indices,
which was used to derive fractal dimension volume maps, are
invariant to intensity transformations; c) global information
about the LV shape using second-order moments complements
the local characterization of the fBm process. Both local and
global boundary information about the LV shape boundaries
was captured with improved precision.
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APPENDIX

A. Covariance of fractional Brownian motion

Given a Gaussian process that is characterized by associ-
ated Hurst parameter H ∈ (0, 1), then it follows that the
covariance function is given by

ρ(s, t) = E(BH(s)BH(t))

=
1

2

[
|t|2H + |s|2H − |t− s|2H

]
, ∀ s, t ∈ RN , (12)

for 0 < s ≤ t, where E denotes the expectation operator with
respect to probability space, and |t| is the Euclidean norm of
t ∈ RN .

B. Discrete fractional Brownian motion

A discrete-time representation of fBm can be obtained by
sampling the continuous-time fBm. When approximating (1)
by sums, the first integral should be truncated, say at -b. The
approximation BH(n) is for n = 1, . . . , N given by

B̃H(n) = CH

( 0∑
k=−b

[(n− k)H−1/2 − (−k)H−1/2]B1(k)

+

n∑
k=0

(n− k)H−1/2B2(k)

)
, (13)

where B1 with respect to B2 are mutually independent vectors.

C. Fractal dimension estimation

There are several ways to estimate the fractal dimension of
a stochastic process modeled by a fBm [18]. All of them are
based on the formula

E
[
(B̃H(n+ l)− B̃H(n))2

]
(14)

for the variogram of fBm, which follows from (A). The fBm
and power-law variogram fits were used to estimate H as a
measure of self-similarity. For the discrete-time fBm process
B̃H(n) defined in (B), the following properties hold [35]:

Property 1: The mean of the fBm increments, which are l
samples apart, is zero, i.e.,

E
[
B̃H(n+ l)− B̃H(n)

]
= 0. (15)

The covariance of the fBm increments, l samples apart, is
given by

γ(l, k) = E
[
(B̃H(n+ l)− B̃H(n))(B̃H(n+ l + k)

−B̃H(n+ k))
]

=
σ2

2

[
|k − l|2H + |k + l|2H − 2|k|2H

]
. (16)

When k = 0 and l = 1, the variance of the unit increments is
σ2, which is the variance of independent identically distributed
samples. From (16), the following two properties of fBm can
be obtained.

Property 2: For unit increments l = 1, the covariance of the
increments becomes

γ(k) =
σ2

2

[
|k − 1|2H + |k + 1|2H − 2|k|2H

]
.

Property 3: The variance of the increments when k = 0 is,

σ2
H(l) = σ2|l|2H .

The self-similarity characteristic of fBm can be recognized
in property 3 with a scale transformation

σ2
H(rl) = σ2|rl|2H

= r2Hσ2|l|2H

= r2Hσ2
H l,

where r > 0. Such a result indicates that fBm is statistically
indistinguishable under a scale transformation and implies
scale-invariance. Combining property 1 and 3 to obtain

E
[
(B̃H(n+ l)− B̃H(n))2

]
= σ2l2H , (17)

which is generally expressed in the form

E
[
|B̃H(n+ l)− B̃H(n)|

]
= c|l|H , (18)

where c is proportional to the standard deviation σ. Taking the
logarithm of (18) yields the linear equation

logE
[
|B̃H(n+ l)− B̃H(n)|

]
= H log |l|+ log c. (19)
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