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Abstract—Deepfake technology, enabled by generative ad-
versarial networks, creates fake video content with significant
societal impacts, such as electoral bias and celebrity defamation.
This research aims to develop an automatic and effective facial
tampering detection model for videos, regardless of their quality.
The proposed two-fold approach enhances facial frame features
using image aggregation and detects feature anomalies through a
neural network with convolutions and fully connected layers. The
paper introduces image frame quality enhancement and different
activation functions to improve performance, achieving up to
98% accuracy with the hybrid model. Additionally, the work
explores the detection of deep fakes in low-quality frames by
reducing frame quality by 20% and 50%. The hybrid model
achieves an accuracy of up to 96% in the first suboptimal
condition and up to 93.7% in the second quality reduction con-
dition. This research presents a promising method for deepfake
detection, with the potential to mitigate its negative social impact.

Keywords: Deepfake; Mesonet; Frame aggregation; Facial
expression; Video tampering

I. INTRODUCTION

In contemporary times, photographs and videos can be
captured and transmitted rapidly across the globe. Conse-
quently, people have become increasingly dependent on these
media to determine the authenticity of an event. In particular,
“live” accounts captured on video have become newsworthy
in both criminal and civil cases. Unfortunately, such videos
have the potential to go viral on social media, especially
when they are fake. This overreliance on visual evidence
can have devastating consequences, as viewers often accept
what they see and hear at face value, placing the lives of
those involved in precarious situations. Hence, it is crucial
to exercise caution when assessing visual evidence to ensure
accuracy and impartiality.

The increasing prevalence of deepfakes and social media
platforms has created a need for the public to discern be-
tween real and fake videos and images. However, identifying
deepfakes is a difficult task that requires significant effort.
This poses a significant threat to personal identity, national
security, and reputation, among other things. Although deep-
fake technology has been around since the 1990s, it has only
become a major concern since 2017, when facial manipulation
of celebrities was used for blackmail [2]. Deepfake content
creators have the power to manipulate images and videos for
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malicious purposes, posing a threat to individuals’ reputation
and national security. The ethical implications of deepfakes are
vast, including concerns about political polarization, national
security, economic impact, pornography, and social media
platforms.

Political polarization and deepfakes have created a damag-
ing divide in society, increasing the risk of mistrust in the
government and its leaders. Disinformation can also manip-
ulate voters during elections, leading to political unrest and
a loss of trust in government officials. Economic problems
can also arise from false facts, such as the potential impact on
global markets due to misleading information. Social networks
play a significant role in the spread of deepfake technology.
This poses a threat to the integrity of the media and important
personalities around the world. Solutions are needed to prevent
deepfakes from continuing to harm public knowledge and
create irreparable situations. The evolution of technology in
video and photo editing has undergone a remarkable evolution,
transitioning from manual interventions to the emergence
of sophisticated algorithms such as Generative Adversarial
Networks [1]. These advanced algorithms have enabled mod-
ifications that are nearly imperceptible to the human eye.
As these capabilities advance, the need for robust counterfeit
detection algorithms capable of identifying deepfake vulnera-
bilities becomes increasingly pronounced. This paper directs
its attention toward the technical intricacies of both deepfake
generation and detection, focusing explicitly on the extraction
of a sequence of facial frames at varying resolutions. This
process facilitates the creation of diverse facial expressions,
enhancing the overall video quality. To achieve this, frame
aggregation [53] is combined with a Mesoscale Network
[44], adapted to identify subtle manipulated facial expressions.
This hybrid methodology allows for the capture of mid-to-
low-frequency patterns, the realm where the most delicate
manipulative artifacts tend to manifest. The efficacy of the
proposed hybrid model is evaluated using the Forensics ++
face data set [11], a widely acknowledged benchmark in the
field. The model’s performance is further benchmarked against
recent comparable works. In order to evaluate the influence
of activation functions on network performance, a variety of
functions are employed. Moreover, the model’s competence
in handling low-quality frames is evaluated by deliberately
reducing frame quality.

The paper is structured as follows: In the second Sec-
tion, we examine prominent face manipulation and deepfake
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techniques. In Section III, we present our proposed deface
detection approach. In Section IV, we discuss our experimental
findings and provide analysis. Finally, we conclude the paper
in Section V.

II. RELATED WORK

Facial manipulations can be classified into four primary
categories based on the extent of the manipulation. This
section presents a review of the relevant literature in order
of prevalence, from the most common to the least common.

A. Identity Swap

The first type of facial manipulation is identity swap, in
which one person’s face is replaced with another in a video.
Several approaches have been proposed to detect deepfakes
using different features and techniques. Korshunov and Marcel
[21] used MelFrequency Cepstral Coefficients and distances
between mouth landmarks to detect deepfakes. They reduced
the dimensions of feature blocks using Principal Component
Analysis and used an RNN based on the LSTM model
for classification. Matern et al. [19] suggested a deepfake
detection system based on visual aspects, such as the color
of the eyes, reflections, and missing details in the eyes and
teeth. They used a logistic regression model and a Multilayer
Perceptron (MLP) [26] and achieved 85.1% AUC for the MLP
system. Xin Yang et al. [22] used facial expressions and head
movements to detect deepfakes. They distinguished fake from
real videos based on differences in head positions and used
SVM for classification. Their approach achieved 89.0% AUC
using the UADFV database, but performed less well on other
databases such as the FF++ database (78.0%) and the DFDC
database (66.2%). Agarwal and Farid [23] used the OpenFace2
toolkit for feature extraction and examined 18 different units
of facial parts related to facial muscle movement, as well as
four features related to head movement. They used Pearson’s
correlation to measure the linearity between features and SVM
for classification. They created their own database based on
YouTube videos for interested people talking in an official con-
text and achieved an AUC of 96.3% for fake video detection.
However, the model encountered some difficulties in detecting
fake videos in which the target person did not look directly
at the camera, so the authors suggested including linguistic
analysis to capture correlations between what is said and how
it is said.

B. Entire Face Synthesis

The entire face synthesis involves creating non-existent face
images using powerful GANs. To detect the difference be-
tween real and fake images, some researchers have suggested
analyzing the internal GAN. For example, Wang et al. mon-
itored the behavior of neurons in the GAN to develop a tool
for detecting fake faces [8]. By examining the patterns of cell
activation layer by layer, they were able to identify key features
that are important for the detection of facial manipulation.
Their proposed approach, called FakeSpotter, extracts neuro
cell cover behaviors for real and fake faces from deep fake

recognition systems such as VGG-Face [9], OpenFace [30],
and FaceNet [31], and trains an SVM for final classification.
Testing real faces from CelebA-HQ databases [32] and FFHQ
[33], and fake faces created using InterFaceGAN [34] and
StyleGAN [33], they achieved a fake detection accuracy of
84.7% using the FaceNet model. However, FakeSpotter has
limitations as it does not perform as well in detecting deep
fake videos that involve both facial manipulation and voice
swapping.

Other researchers have proposed alternative approaches to
detect fake faces. For example, McCloskey and Albright devel-
oped a color-based detection system based on the observation
that real camera images and fake synthesis images differ in
color [28]. Their system transforms a multichannel feature
map into a 3-channel color image and uses a linear SVM for
the final classification. Using the MFC2018 dataset [29], they
achieved an AUC of 70.0%. However, this approach requires a
large training dataset and training time. Furthermore, Guarnera
et al. suggested a fake detection system based on the analysis
of convolutional effects [35]. They extracted features using the
Expectation-Maximization algorithm [36] and used common
classifiers such as SVM, Linear Discriminant Analysis (LDA)
and k-Nearest Neighbors (k-NN) for final detection. Their
proposed approach achieved a final precision of 99. 81% when
tested on fake images created using AttGAN [37], GDWCT
[38], StarGAN [39], StyleGAN and StyleGAN2 [40]. How-
ever, this model is limited to detecting fake images generated
from specific types of GANs. However, its limitations include
the need for costly thermal cameras, rare thermal data in
videos, environmental sensitivity, and integration challenges
with existing detection systems.

C. Attribute Manipulation

The process of attribute manipulation involves adjusting
certain facial features, including hair color, skin, sex, age, and
glasses, among others. Researchers have modified the internal
pipeline of GAN to distinguish between real and manipulated
images. By monitoring the behavior of neurons, Wang et
al. proposed that patterns of cell activation layer after layer
could help detect counterfeit faces, capturing more accurate
and important features of the facial manipulation detection
system. Their proposed approach, called FakeSpotter, extracts
neural cell cover behaviors for real and fake faces from deep
facial recognition systems such as VGG-Face, OpenFace, and
FaceNet. The model is then trained using an SVM for the final
classification. The authors achieved the best performance using
the FaceNet model, with a detection accuracy of 84.7% for ma-
nipulation. The authors trained their proposed approach using
real faces from CelebA-HQ databases and FFHQ databases, as
well as fake faces generated by InterFaceGAN and StyleGAN.

However, the FakeSpotter approach focuses only on facial
images without any regard for sound, whereas the DeepFake
Detection Challenge includes two different fake domains, face
exchange, and voice swapping. Many studies have also focused
on purely deep learning methods to improve accuracy. For
instance, Bharati et al. proposed a deep learning approach



based on a Boltzmann restricted machine to discover the
digital revision of facial images. Their approach achieved an
accuracy of 87.1% for manipulation detection of celebrity
and ND-IIITD retouching databases. However, this approach
cannot determine whether the image is real or fake if there is
facial makeup on the target person.

More recently, Jain et al. proposed a similar approach based
on nonoverlapping face patches. Their model consists of a
CNN feature extractor of 6 convolutional layers and 2 fully
connected hidden layers, with the remaining links inspired by
the ResNet structure. They achieved almost 100% detection
accuracy training their model on the modified ND-IIITD
database provided in a previous study and the fake images
created using the StarGAN approach and using an SVM for
the final classification. However, like Bharati et al.’s approach,
this model cannot distinguish between real and fake images
with facial makeup on the target person.

D. Expression Swap

Facial reenactment, also known as expression swap, involves
modifying a person’s facial expressions. Nguyen et al. [12]
proposed a multitask learning approach for the detection of
expression swaps, evaluated on the FaceForensics++ database
[11]. Their method achieved a 7.1% equal error rate (EER)
for Face2Face and a slightly higher 7.8% EER for neuralTex-
ture. The authors used an autoencoder to estimate the final
classification and incorporated the attention mechanisms of
[3] to improve the training process. To test their proposed
discovery policy, they used the DFFD database, which is
based solely on data from the FaceForensics++ database. Their
approach obtained an area under the curve (AUC) of 99.4%
and an EER of 3.4%. However, their model has limitations in
detecting high-quality images and audio attacks. Sabir et al.
[14] proposed an approach based on recurrent convolutional
networks that considers both image and time information.
They achieved 94.3% AUC for Face2Face technology in
the FaceForensics++ database, but only analyzed low-quality
videos. Another proposed approach, which uses optical flow
areas to exploit the potential differences between genuine and
fake videos, uses the PWC-Net approach [20]. The use of
optical flow is motivated by the abnormal visual flow present
in fake videos due to the unusual movement of lips, eyes, etc.
This approach achieved preliminary accuracy results of 81.
6% using both the VGG16 and ResNet50 networks for tamper
detection, but it is also weak against high-quality images.

Modern deep learning methods have shown good results
in detection systems for both Face2Face and neuralTextures.
Rossler et al. [11] proposed an XceptionNet-based detection
system that achieved 100% near-RAW quality for both manip-
ulations. The evaluation of detection systems also considered
different video quality levels to simulate video processing
on social networks. In this real scenario, the accuracy of all
detection systems is reduced with the video quality, similar to
what occurs in identity swap manipulation. The four different
categories of facial manipulation and the main associated
detection characteristics are illustrated in Figure 1.

This research paper aims to investigate face-swapping in
low-resolution frame image quality and explore improvements
using different activation functions. Face-swapping is currently
one of the most prevalent challenges on social media and
presents an easy avenue to spread fake news about prominent
individuals.

Fig. 1. Deepfake facial tampering categories and main facial characteristics
and visual cues.

III. METHODOLOGY

This section outlines effective ways to tackle the problem
of Deepfake or Face2Face. It has been found that a single
network is not sufficient to efficiently solve these problems.
However, due to the similar nature of the counterfeiting
techniques used, using identical network structures for both
can lead to good results.

Our proposed method involves detecting fake face videos by
analyzing them at medium- and low-quality levels. We utilize
an image aggregation algorithm to improve image quality, as
detecting fake images based on image noise in videos can
be challenging. Similarly, at a higher semantic level, it can
be difficult for the human eye to distinguish fake images,
especially when the image depicts a human face [42], [43]. To
overcome this, we suggest adopting a hybrid approach using
a deep neural network with a few layers.

Our approach aims to achieve the best performance with a
low representation level and a low number of parameters. We
use well-established image classification networks [16], [24],
which alternate between convolutional and pooling layers to
extract features, and a dense classification network.

A. Image Aggregation

Due to the collaborative nature of information processing,
collaborative filtering strategies are employed for frame de-
noising [43]. Block-matching and 3D collaborative filtering
(BM3D) denoising algorithms are used for this purpose.
BM3D combines 2D fragments to create 3D data lines called
GROUPS. By filtering GROUPS, a three-dimensional estimate
is obtained that includes many pixel estimates. After that, data
and information are collected to form the final denoised frame.
The quality of denoised frames is improved by adopting local
structure treatments. It is also proposed that a BM3D-oriented
algorithm can use non-local filtering models of different types,
in both edge and smooth forms.



This research employs a denoising frame approach, the
combined regression alternative (COBRA) algorithm [43].
The approach combines different classical denoising methods,
and its effectiveness may vary depending on the noise type
and frame pixels. Figure 2 illustrates the general model of
COBRA. The COBRA algorithm is used because it employs
many different classical noise reduction methods to obtain
numerous pixel predictions for noise reduction. These values
are then combined to produce a new noise reduction in
the best possible way. Since each classical method has its
own advantages and disadvantages, and its efficiency varies
depending on the noise type or frame structure, the COBRA
approach aims to leverage the strengths of each method to
improve denoising performance.

The COBRA algorithm was utilized to reduce the noise
in frames. For each pixel in the blurred frame X , multiple
estimators were called and then aggregated using a weighted
average, as shown in (1):

f(p) =

∑
q∈X w(p, q)x(q)∑

q∈X w(p, q)
(1)

The weights are defined in (2) as

w(p, q) =

m∑
k=1

[|fk(p)− fk(q)| ≤ ϵ] ≥Mα (2)

Here, ϵ and α ∈ (0, 1) were the confidence and proportion
parameters, respectively. These weights ensured that to reduce
the noise in the p pixels, the COBRA algorithm classified the
intensity of each pixel as at least the ratio α, from the initial
capabilities of f1 . . . fm, with the same value in p and q, up
to a confidence level of ϵ. The intensity of pixels based on
these weights, including the consensus scale, is calculated in
(2). The predicted intensity for each pixel p of the frame was
f(p), and the COBRA-denoised frame was the collection of
pixels f(p), p ∈ X .

Algorithm 1 follows the general scheme shown in Figure 2,
allowing users to control the number of features used in the
frame patch. For each pixel p to denoise, frame correction was
considered, centered on p, of size (2×patch size+1)2. In the
trials section, a patch size of 1 was typically a satisfactory
value. Thus, for each pixel, a vector was built up of nine
features, each of which reduced the noise of the frames
differently.

B. MesoNet Architecture

MesoNet is a deep learning architecture for detecting facial
manipulation in images, specifically focusing on detecting
manipulation at a mesoscopic (medium-scale) level, such as
the modification of facial features [44]. It involves a series of
convolutional and pooling layers to extract features from the
input image, followed by several fully connected layers for
classification.

In the networks’ process, the video is first segmented into
frames, and then faces are detected and cropped before being

Fig. 2. General model of combined regression alternative approach
(COBRA).

Algorithm 1: Image aggregation algorithm
Data: Noise image
Result: y ← Denoise image
Xtrain ← training images with artificial noise
ytrain ← original training images (ground truth)
Xtest ← feature extraction from Data noise in a

vector of size (nb pixels, (2× psize+ 1)2)
ytest ← s prediction of Xtest by COBRA
Psize ← the pixel patch size to consider M = the

number of COBRA machines to use
Estemator ← [ ]
while Data ≤ Psize do

f(p)←
∑

q∈x w(p, q)× (q)∑
q∈x w(p, q)

(3)

w(p, q) =

(
m∑

k=1

|fk(p)− fk(q)| ≤ ϵ

)
≥Mα

(4)

; /* F (p) to aggregate these
estimators by doing weighted
average on the intensities & w([p, q])
to define the weights */

end
← Assemble all the estimators that, in turn, modified

all poor pixels.

saved. To improve the features in the frames, the image
aggregation algorithm is used by passing the three dimensions
of the frame data (255, 255, and 3), as shown in Figure 3.
The frames are then fed into the network, which identifies
fake frames from real ones through the following steps: In
the first step, the model parameters are set for training.
The relevant parameters include fixed input frames of size
(256, 256, 3), a batch normalization size of 64, 200 training



epochs, a max pooling layer, a learning rate of 0.00001, and
a decay rate of 0.00005. The loss function used is cross-
entropy, and Stochastic Gradient Descent is employed for
optimization. During training, the shuffle variable is set to
True, and the experiment’s performance is evaluated using
ACC. In the second step, feature extraction is performed using
four convolutional neural network blocks, each consisting of
three methods: a convolutional layer, a batch normalization
layer, and a max pooling layer. The convolution layer sets the
size and number of filters used for convolution, with each filter
representing a different feature of the frame. ReLU functions
are used to prevent the exponential growth of computations
required to run the neural network, and to avoid the vanishing
gradient problem. Batch normalization improves the speed,
performance, and stability of the neural network, while max
pooling reduces the dimensionality of the data.

In the third step, Dropouts are used to regularize and
improve the robustness of the fully connected layers. In the
fourth step, a sigmoid function is applied, which can directly
handle outputs ranging from 0 to 1. In the fifth step, the
prediction is evaluated. MesoNet’s prediction is accurate when
the actual label corresponds to MesoNet’s predicted output
after rounding to 0 or 1.

Finally, in the sixth step, a deepfake video program is devel-
oped using an online executable IDE. For more information,
see Figure 3.

C. Detecting Tampering

To effectively solve the classification problems caused by
deepfake images using deep learning networks, an approach
involves interpreting the weights of the convolutional kernel
and neurons as descriptions of frames. However, this method
provides limited information in the case of facial images
and applies only to the first layer. Instead, generating an
input frame that selectively activates a specific filter and
observing the resulting signal interactions can be employed.
To do this, we use a maximization approach expressed by
E(x) = fij(x)−λ||x||p, where fij represents the output filter
for each layer j, and incorporate input regulation to reduce
noise.

Figure 4 shows the maximum activation of several neurons
in the four convolution layers of MesoNet. These neurons
are classified according to the weight mark applied to their
product, which facilitates classification decisions. By calcu-
lating whether the activation pushes towards a negative score
(i.e. counterfeit category) or a positive score (i.e., real class),
we can determine the authenticity of the image. Interestingly,
positive weighting neurons tend to display intricate details of
the eyes, nose, and mouth, while passive weight areas exhibit
strong details on the back, resulting in a softer facial area.
This can be attributed to the fact that deepfake images tend to
be blurry or lack detail, especially compared to the rest of the
intact frame.

IV. EXPERIMENTS AND DISCUSSION

This section describes the results of experiments conducted
in three main categories: improving frame quality and de-
tecting deep falsification in videos. The experiments involved
using an image aggregation algorithm to extract and improve
frame features, enhancing the MesoNet fake frame detection
technique with different activation functions, and developing a
hybrid model that combines the image aggregation algorithm
with MesoNet to detect fake frames in low-quality frames.

A. Deepfake Dataset

The FaceForensics ++ dataset was selected due to its more
than a thousand manipulated videos and their original counter-
parts created through the Face2Face approach. The dataset is
already divided into validation, training, and testing sets, and
provides lossless compressed videos, allowing the evaluation
of the model’s robustness across various compression levels. A
subset of 19,509 images (as shown in Table I) was randomly
selected from the dataset using the Viola-Jones detector [46]
and a trained neural network to detect facial features [45], with
approximately 50 faces extracted per scene. Real facial images
were also included, and the data set was manually reviewed to
ensure accuracy and maintain a balanced distribution of high-
and low-resolution images in both the training and testing sets.

TABLE I
DEEPFAKE DATASET

Set Forged Real Total
Training 5111 7250 12361
Testing 2889 4259 7148

B. Image aggregation Results

To ensure statistical accuracy, we repeated all experiments
using the COBRA algorithm five times. The ensemble learning
method designed for regression tasks integrates several well-
known noise removal techniques, such as Gaussian, salt-and-
pepper, speckle, random patch suppression, and Poisson. We
found that aggregating the results of multiple approaches
produced superior image quality compared to using a single
approach.

To assess the quality of the image improvements, we used
the PSNR and RMSE scales. The PSNR scale measures the
quality of image reconstruction, with typical values ranging
from 20 to 80 dB [48]. Table II displays the results of
the five runs of the COBRA algorithm, with PSNR and
RMSE measures for each run. In general, all the results were
favorable. The best result, with a PSNR value of 78.51 and an
RMSE value of 0.028, was achieved in run5.

C. MesoNet Results

We refer to X as the input group and Y as the output group,
and the random variable pair (X,Y ) takes values in X × Y
and f , as a prediction function of the selected item that takes
values in X to the action group A. The selected classification
task is to reduce the error action group A. The selected



Fig. 3. The network architecture of Meso-4. Layers and parameters are displayed in the boxes, output sizes next to the arrows.

TABLE II
IMAGE AGGREGATION RESULTS

USING COBRA ALGORITHM

Run PSNR RMSE
1 69.04 0.090
2 77.73 0.033
3 75.18 0.044
4 73.04 0.067
5 78.51 0.028
Avg 74.70 0.052

classification task is to reduce the error ε(f) = E[l(f(X), y)],
with l(a, y) = 1

2 (a− y)2.
MesoNet network was implemented with Python 3.5 using

the Keras 2.1.5 module [54]. The weights of the network are
improved by successive batches of 75 images of 256×256×3
using ADAM [55] with default parameters (β1 = 0.9 and β2

= 0.999). The initial learning rate is 10−3 divided by 10 per
1000 repetitions, down to 10−6. To enhance the generalization
and durability of our approach, we subjected input batches
to various minor random perturbations, including zooming,
rotation, horizontal shifting, brightness adjustment, and color
transformation. Despite the relatively small number of param-
eters in the MesoNet network, we achieved impressive results
with just a few hours of improvement on a standard consumer-
class PC.

The ratings for the MesoNet trained network on the
Face2Face forgery dataset can be found in Table III. The
MesoNet network achieved an average score of 94% across
all individual frames in the dataset.

TABLE III
CLASSIFICATION SCORES OF MESONET NETWORK ON FACE2FACE

DATASET

Class Forged Real Total
Score 92.01 96.27 94.14

D. Different Activation Functions

Activation functions can be mathematically expressed in
the neural network node. However, only a few of these
functions are commonly used and are well-known for neural
network analysis. The reverse propagation technique [49] [50]
strikes the derivatives of the activation function. Therefore,
the selected activation function must be differential [51].
Furthermore, the function should be provided smoothly for
the updates of the reverse propagation weight to avoid zigzag,
for example, in the sigmoid function [52]. Lastly, the acti-
vation function should easily calculate the power of backup
computing, an important feature in very large neural networks
consisting of millions of nodes. Below is an analysis of some
functions with individual pros and cons, including real-world
models, that will lead to an important comparison between
them.

1) Sigmoid Function: A mathematical function with sig-
moid curve features is called the sigmoid function. X-function
groups are not linear because this type of activation function
is nonlinear. Thus, it makes sense to stack layers. This also
applies to nonbinary activation. It also has a smooth graded
value. This makes them suitable for neural networks with
binary classification. The sigmoid function is defined as

f(x) =
1

1 + e−x
. (5)

2) Tanh Function: Neural network stops may occur at edge
value if we only use the sine activation function. Thus, we need
to apply the overload function as an alternative, which is also
known as the Tanh function. The output values in the Tanh
function range from -1 to 1, which is just an extension of the
sigmoid function curve. Thus, negative inputs for deterministic
functions will be assigned to a negative output. In addition,
for input values that are close to zero, they will also be set
to output values that are close to zero. Therefore, the network
is not interrupted due to the above features during training.
Another reason for the preference for Tanh over sigmoid is



Fig. 4. Variation filters and image features at different levels. The first row shows original and fake images for RELU, sigmoid, and Tanh activation
functions. The second row displays MesoNet’s low and mid-level features, with the second column representing a low-level feature with an aggregation
function of 3× 3× 8, and the third and fourth columns representing mid-level features with aggregation functions of 5× 5× 16.



that Tanh derivatives are larger than sigmoid derivatives near
zero. The Tanh function can be defined as

f (x) =
(e

x − e−x)

(e
x
+ e−x)

. (6)

3) Basic Rectified Linear Unit (ReLU): This type of
activation function is responsible for converting weighted
inputs that are summarized from node to strict output or
relative total. These functions are multi-definition linear
functions, and positive inputs usually come out directly;
otherwise the output is zero. RELU is an activation that
assigns zero to the same values and a value above zero
described in (7). It is noticeable that for minor regression
problems with neural networks, Tanh can be better than
RELU. However, any function approaching the RELU
activation function is always multi-definition linear.

f(x) = max(0, x). (7)

By comparing the different functions and the characteristics
of the activation functions, Table IV shows the results of
correctly classified image frames using different AFs. It is
evident that the Tanh is still reliable and able to work well
in binary classification models. This could be interpreted as
the output range of [-1, 1] of the Tanh activation function
helps center the data around zero and improves learning by
reducing bias shift. Its steeper gradient compared to that of
the sigmoid aids in mitigating vanishing gradient problems,
leading to better training and faster convergence. Additionally,
Tanh’s zero-centered output can enhance the network’s ability
to capture subtle anomalies introduced by deepfakes, while
avoiding issues like dead neurons seen with ReLU.

TABLE IV
CLASSIFICATION ACCURACY WITH DIFFERENT ACTIVATION FUNCTIONS

Activation function Sigmoid Tanh RELU
Accuracy 94.1% 95.8% 93.6%

E. Classification with Aggregation

One of the drawbacks of video analysis, particularly for
online videos, is the pressure it exerts on the quality of
information, resulting in a significant loss of accuracy. How-
ever, the advent of facial feature enhancement methods offers
the possibility of improving experiment results and obtaining
more precise overall scores for videos. In this paper, we
focus on seven traditional noise removal methods, including
the Gaussian filter, median filter, bilateral filter, Chambolle’s
method [47], non-local means [16], [17], Richardson-Lucy
deconvolution [13], [14], and the in-painting method [18].
Our aim was to compare the performance of these filters and
to take advantage of the strengths of each to achieve better
results. For example, Gaussian filters are known to blur edges,
while median filters are effective against salt and pepper noise.
The bilateral filter is reputed to preserve edges and retain
finer details of the image, which is also a strength of non-
local means. The COBRA assembly scheme was employed to

aggregate the results of these filters, leading to a significant
improvement in detection rates, with a peak of 98% obtained
on the deepfake dataset with MesoNet.

The results are presented in Table V, which shows the
number of correctly classified images after aggregation with
various activation functions. Our findings indicate that Tanh
was the most effective in extracting features from images
and distinguishing real from fake features compared to other
activation functions. This underscores the reliability of Tanh in
binary classification models. However, the classification time
of the model increased due to the image aggregation process,
which enhanced the quality of the existing features.

TABLE V
VIDEO CLASSIFICATION SCORES ON FACE2FACE DATASET BEFORE AND

AFTER IMAGE AGGREGATION.

Activation Function Accuracy Time (hrs)
Sigmoid 94.10% 22.06

Tanh 95.83% 19.56
RELU 93.63% 16.50

Sigmoid Aggregation 97.90% 23.54
Tanh Aggregation 98.05% 21.01

RELU Aggregation 96.23% 18.43

F. Classification with Different Resolutions

We investigated the effectiveness of the MesoNet model
in detecting deepfakes across different resolution reduction
levels. Specifically, we evaluated the model performance under
mid-quality (20% image resolution reduction) and low-quality
(50% image resolution reduction) settings. It is worth noting
that further reducing the image resolution could result in
videos with indiscernible details, which is a rare occurrence in
real-world scenarios. Our experiments revealed that the hybrid
model performed exceptionally well even under varying frame
compression conditions. In particular, the model achieved a
resolution score of 93. 75% when the quality of the frame was
reduced by half and 96. 73% when the quality of the frame
was reduced to 20%. These results are presented in Table VI.

TABLE VI
VIDEO CLASSIFICATION SCORES ON FACE2FACE DATASET WITH

DIFFERENT RESOLUTIONS

Activation function Accuracy 20% quality 50% quality
Sigmoid 97.90% 96.03% 92.81%

Tanh 98.05% 96.73% 93.75%
Relu 96.23% 94.82% 90.61%

G. Performance Evaluation

Assessing the robustness in detecting deepfake facial tam-
pering across different levels of resolution and video quality
degradation is significant for several reasons. a) Real-world
applicability: ensures that the model is effective even when
video quality is compromised, making it more practical for
diverse applications, especially since deepfakes are sometimes
generated at low resolution to complicate detection [57]. b)
Generalization: testing helps determine how well the model



performs beyond its training conditions, revealing its ability
to handle various distortions and artifacts. c) Performance
metrics: provide insights into how performance changes with
video quality degradation, helping identify thresholds where
accuracy might start to decline. d) Improvement opportunities:
are identified by analyzing performance, offering chances to
refine and enhance the model to better handle such variations.

Table VII presents a comparative analysis of various ap-
proaches for detecting deepfakes in face–to–face swaps. The
best results achieved for each public database are highlighted
in bold. It is worth mentioning that all studies utilized the
faceforensics++ database, except for Li et al., who employed
a modified version of the original database, namely Deepfake
TIMIT.

TABLE VII
COMPARISON WITH PERFORMANCE IN LITERATURE∗

Work Method Classifier AUC Dataset
Matern
et al.
[19]

Visual
Features

LR 78.0%(HQ),
77.0%(LQ)

FF++

Yang
et al.
[22]

Head Pose SVM 89.0%(HQ),
89.0%(LQ)

FF++

Agarwal
and
Farid
[23]

Head Pose
and Facial

SVM 96.3%(HQ),
–(LQ)

FF++

Huang
et al.
[58]

Face
Swaping

CNN 96.8%(HQ),
–(LQ)

FF++

Li et
al.
[56]

Face
Warping

CNN 99.7%(HQ),
–(LQ)

Deepfake
TIM

Luo
et al.
[59]

Face
Forgery

CNN 95.7%(HQ),
–(LQ)

FF++

Rossler
et al.
[11]

Steg
analysis

CNN 94.0%(HQ),
–(LQ)

FF++

Sun
et al.
[60]

Face
Forgery

CNN 96.9%(HQ),
–(LQ)

FF++

Nguyen
et al.
[12]

Deep
Learning

Capsule
Net

96.6%(HQ),
–(LQ)

FF++

Our
model

Frame
aggregation

CNN
+AF

98.1%(HQ),
93.75%(LQ)

FF++

∗ HQ and LQ stands for high and low image quality respectively, and ‘–’
sign in LQ means research did not investgate low quality images.

Although the latest deepfake approaches show visually
impressive results, it was shown that they can still be detected
by trained forgery detectors. It is particularly encouraging that
the difficult state of low-quality video can also be addressed;
image aggregation to improve image quality, and the MesoNet
to detect deepfake, where humans and handmade features face
difficulties. To train detectors using domain knowledge, we
offer a hybrid model that may help develop deep detection
algorithms and make them more accurate, with a low-quality
dataset for manipulated faces.

In this paper, we focus on the impact of detection of

modern manipulation methods, in particular facial swapping,
for low-quality videos. All image data, and pre-trained model,
used in this work are publicly available and are already used
by other researchers. In particular, transfer learning is of
great importance in the forensic community. The performance
results were very good in cases of different image compression
as the model’s accuracy to reduce the image quality of the half
was 93.75%. The proposed new approach could be promising
for future research in the field of digital media forensics,
particularly with a focus on facial forgery.

V. CONCLUSION

This research work aimed to determine the feasibility of de-
veloping image aggregation and MesoNet frame aggregation to
improve the quality of frames as input and output to determine
fake or real frames. The work showed that the introduction
of a generic aggregate denoising process can improve the
performance of prefilters and fully exploit their capabilities.
Furthermore, the proposed deepfake detection network was
able to achieve an average face-to-face recognition rate of 98%
and 93. 75% for low-quality videos. However, the study also
suggests that more tools are needed to develop deeper, more
effective and efficient networks in the future. This includes
exploring audio techniques for spotting deepfakes, discovering
a comprehensive approach capable of detecting all types of
deepfakes, and exploring the detection of multiple deepfake
faces in the same frame.
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