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Abstract

Purpose: To investigate whether the FD of non-small cell lung cancer
(NSCLC) on CT predicts tumor stage and uptake on 18F-fluorodeoxyglucose
positron emission tomography.

Material and Methods: The FD within a tumor region was determined
using a box counting algorithm and compared to the lymph node involvement
(NI) and metastatic involvement (MI) and overall stage as determined from
PET. A Mann-Whitney U test was applied to the extracted FD features for
the NI and the MI.

Results: The two tests showed good significance with p < 0.05 (pNI =
0.0139, pMI = 0.0194). Also after performing fractal analysis to all cases, it
was found that for those who had a CT of stage I or II had a higher likelihood
of the NI and/or MI stage being upstaged by PET, Odds Ratio 5.38 (95% CI
0.99 -29.3). For those who are CT stage III or IV had an increased likelihood
of the NI and/or MI stage being down staged by PET, Odds Ratio: 7.33
(95% CI 0.48 -111.2).

Conclusion: Initial results of this study indicate higher FD in CT images
of NSCLC is associated with advanced stage and greater FDG uptake on
PET. Measurements of tumor fractal analysis on conventional non-contrast
CT examinations could potentially be used as a prognostic marker and/or
to select patients for PET.
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1. Introduction

The healthcare burden and economical costs associated with lung cancer
is substantial on a global scale [1]. It is the most common cause of cancer
death, where about 55% of the reported cases occurred in the developing
countries and nearly one in five of all cancer deaths in the developed countries
are from lung cancer [2, 3].

The prognosis and management of lung cancer depends on the patient’s
physical condition, the histopathology of the tumor and the disease extent.
The 3-year cumulative survival for non-small cell lung cancer (NSCLC) was
found to be for stage I 39%, stage II 30%, stage III 6% and stage IV 0.5%
[4]. Lung cancers can be generally classified into two histological categories,
non-small cell and small cell carcinomas. While small cell carcinomas, which
account for 20–25% of all lung cancers, have already disseminated by time of
presentation in 80% of cases NSCLCs that are localized or locally advanced
at diagnosis, are treated by resection alone or with chemotherapy and radio-
therapy [5].

Staging is mostly used for non-small cell carcinomas, where patients are
staged so that management decisions can be made and then used to identify
patients who will benefit from surgery. Current ways of clinical staging are
through non-invasive assessments, which include the medical history, patient
examination and laboratory tests Greene et al. [5]. Computed tomography
(CT) is most commonly used in the staging of patients as it is widely available
and can be readily interpreted. Positron emission tomography (PET) is used
after CT in selected patients, but it is more expensive and there are a limited
number of scanners.

The tumor node metastatic staging classification involves the intra-thoracic
assessment of the primary tumor with its size, location, relationship to sur-
rounding structures, the nodal involvement, and whether there has been sys-
temic metastasis. The nodal status is an important factor to decide whether
the patient qualifies for surgical treatment. CT and magnetic resonance
imaging (MRI) assess the size of the lymph nodes while 18F-fluorodeoxyglucose
positron emission tomography (FDG-PET) assesses the metabolic activity.
According to the National Institute for Health and Clinical Excellence (NICE)
guidelines the sensitivity and specificity of CT in staging the nodal status
is 57% (95 CI 49–66%) and 82% (95% CI 77–86%) respectively [6]. The
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positive and negative predictive value was 56% (range 26–84%) and 83%
(range 63–93%) respectively. From the above findings we can see that a sig-
nificant number of patients (approximately 40–45%) with nodal disease are
miss-classified. For FDG-PET the sensitivity and specificity was 84% (95
CI 0.78–0.89%), 89% (95% CI 0.83–0.93%), respectively, PPV 79% (range
0.4–1.0%), and NPV 93% (range 0.75–1.0%). In summary, FDG-PET has
been shown to be more accurate in the determination of mediastinal nodal
disease than CT [6]; therefore, improvements in CT performance would be
useful.

Fractal analysis measures the complexity of a structure compared to the
surrounding region. Therein, image intensities from CT scans are trans-
formed to quantitative values assessing the irregularity or heterogeneity of
the image texture surface – called fractal dimension (FD) – and then frac-
tal analysis is performed. The transformation looks at the spatial variation
in intensity of each pixel within a predefined local neighborhood. Irregu-
larity in tumors has been associated with increased severity and thus stage,
so this complexity may also be related to corresponding fractal dimension
values [7]. Fractal analysis has been previously used to distinguish benign
from malignant disease, and in the quantification of diffuse lung abnormality
like idiopathic pulmonary fibrosis, ground glass opacities and also for the
quantitative evaluation of pulmonary emphysema. Also it has been used
for investigation of peripheral pulmonary nodules detected by high resolu-
tion CT. Previous work has shown the feasibility of the fractal dimension in
analyzing and staging lung tumor texture regions acquired via contrast en-
hanced CT images [8], and was less susceptible to acquisition noise Al-Kadi
[9]. Kido et al. tried to distinguish bronchogenic carcinomas from benign
pulmonary nodules, and they concluded it may be possible to distinguish
adenocarcinomas from squamous cell carcinomas Kido et al. [10]. In another
similar work, fractal analysis was employed to differentiate pure bronchoalve-
olar carcinomas, which has a good prognosis from non-bronchoalveolar cell
carcinoma Kido et al. [11]. Other works showed that there is a significant
relationship between texture features in NSCLC on non-contrast-enhanced
CT and tumor metabolism and stage Ganeshan et al. [12], and in another
study the potential for tumor heterogeneity in NSCLC, as assessed by CT
texture analysis, to provide an independent marker of survival for patients
with NSCLC was investigated Ganeshan et al. [13].

In this context, studies which employed FDG-PET in NSCLC is the
work by Borst et al, which investigated the relationship between standard-
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ized FDG uptake value (SUV) obtained from FDG-PET and treatment re-
sponse/survival of inoperable NSCLC patients treated with high dose ra-
diotherapy Borst et al. [14]. Lee et al evaluated the response and survival
for platinum-based combination chemotherapy in chemonäıve patients with
NSCLC according to pretreatment standardized FDG-PET Lee et al. [15].
Mac Manus et al showed that the intensity of FDG uptake in pulmonary tis-
sue after radiation therapy determined using a simple visual scoring system
had a significant correlation with the presence and severity of radiation pneu-
monitis Mac Manus et al. [16]. Also de Geus-Oei et al evaluate the usefulness
of FDG-PET for the assessment of chemotherapy response in patients with
non-small cell lung cancer de Geus-Oei et al. [17]. The predictive capabilities
of diffusion-weighted MRI and FDG-PET/CT for tumor response to ther-
apy and survival in patients with NSCLC receiving chemoradiotherapy was
compared by Ohno et al Ohno et al. [18], and Zhang et al evaluated FDG-
PET/CT for the assessment of therapy response and prediction of patient
outcome after concurrent chemoradiotherapy Zhang et al. [19]. A review on
the different texture analysis methods applied in FDG PET/CT for provid-
ing predictive and prognostic information can be found in Chicklore et al.
[20].

The aim of this paper is to investigate whether if the FD or complexity
of the texture of a tumor correlates with PET findings and tumor stage.
If we demonstrate that we are able to predict the likely PET findings and
tumor stage from conventional non-contrast enhanced CT scans – which is
considered more challenging as compared to contrast enhanced CT scans –
this would improve selection of patients for PET scans.

2. Materials and Methods

2.1. Clinical data

Images of primary tumors were obtained from PET-CT studies in Brighton
& Sussex University Hospitals NHS Trust (Brighton, UK) of 56 patients (31
males and 25 females with age 68 ± 10 years old) diagnosed with NSCLC,
between the period of April 2006 and November 2006 were included in the
study. PET-CT was performed as these patients were considered potentially
suitable for surgery or chemotherapy on the basis of an initial CT. Patients
were grouped as stage I, II, III or IV using conventional CT criteria for tumor
size and local invasion and PET assessments of nodal and distant metastases.
Based on FDG-PET imaging, the number of patients with tumor stages I, II,
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III and IV were 25, 12, 15 and 4 respectively. Average tumor SUV for all pa-
tients was 14.13 (3.2 - 34). Patients had fasted for six hours prior to the study
and their height, weight and serum glucose level was recorded. Histological
examination of biopsy material confirmed NSCLC in all patients. All clin-
ical PET-CT examinations had been dual-reported by radiologists/nuclear
medicine physicians. PET images were re-analyzed to obtain SUVmax mea-
surements of FDG uptake by an operator blinded to the results of fractal
analysis.

2.2. Image acquisition

A GE Discovery ST PET-CT system (GE Healthcare, Waukesha, WI,
USA) modality was used, with both CT and PET data acquired in one pro-
cedure in accordance with a standardized protocol. PET-CT images had
been acquired in the supine position 60 minutes after an injection of 400
MBq of 18F-FDG. The CT acquisition comprised of an initial digitally ac-
quired radiograph (10 mAs, 120 kVp, fixed rotational speed) followed by a
conventional low-dose CT of the neck, chest abdomen and pelvis without
contrast material (80 mAs, 140 kVp, rotational speed = 0.8 s/rot, pitch =
1.5, slice thickness = 3.75 mm). The pixel size for the non-enhanced CT
images used in this study was 0.98 mm. To enable subsequent calculation of
tracer uptake expressed as the standardized uptake value, the initial activ-
ity and time, administration time, and residual activity and time had been
recorded.

2.3. Fractal Analysis

The FD within a tumor region was determined on a pixel-by-pixel basis
using a box counting algorithm and compared to the nodal, metastatic and
overall stage determined from PET. FD was also correlated with the maximal
(SUVmax), which represents the pixel with the highest FDG tumor uptake
activity, and average (SUVavg), which represents the average of FDG tumor
uptake activity in an area Adams et al. [21]. Fractals are used to describe non-
Euclidean structures that show self-similarity at different scales as formulated
in Equation (1) Al-Kadi [22], Mandelbrot [23]. Given that most biological
and natural features show discontinuities and fragmentation so they tend to
have a fractal dimension (FD).

FD =
log(Nk)

log( 1
k
)

(1)
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Where Nk is the number of self-similar shapes and k is the corresponding
scaling factor (i.e. the size of the scaling kernel around each pixel). Theo-
retically, the scaling factor k should represent how much a specific structure
of pixels are self-similar to its surrounding. For the 512 mm × 512 mm CT
images having a resolution of 16 bits/pixel, the k range was chosen to be in
the range between 2 to 7 and found that the best scaling is achieved in this
range as the FD image starts to become blurry Al-Kadi and Watson [8], due
to resolution constraints of the image, if we tend to extend the range deeper.

The differential box counting algorithm Li et al. [24], Chen et al. [25],
Buczkowski et al. [26], Sarkar and Chaudhuri [27] was used to estimate the
fractal dimension for each pixel in the CT image. The original CT image of
size M ×N is transformed to a FD parametric image by applying a varying
size non-linear kernel of m× n as: (a, b) = d(k/2, k/2)e for odd size kernels,
and (a, b) = d(k/2 + 1, k/2 + 1)e for even size kernels that operates by block
processing on the neighboring pixels, where k = 2, 3, 4, . . . , j is the scaling
factor, and the two variables a and b represent non-negative integers that
center the kernel n(s, t) on pixel pxy in the original image. By varying k,
we vary the size of the kernel bounding the pixel as illustrated in (Fig. 1).
The kernel finds the difference between the highest (pmax) and lowest (pmin)
intensity pixels and divides the results by the scaling factor as shown in (Fig.
2). Then the floor of the results is taken and one is added to make sure no
zeros are encountered when we take the logarithm of all results. The kernel
is applied as in Equation (2) giving the output image.

Figure 1: Odd and even size kernels applied to acquired CT image I, and pxy is the pixel
operated upon.
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F (x, y) =
a∑

s=−a

b∑
t=−b

n(s, t)I(x + s, y + t) (2)

The output image F (x, y) is then multiplied by the square of the highest
scale value j and divided by the square of the relative scale of the applied
kernel as shown in Equation (3).

Nd(x, y) =

⌊
F (x, y)× j2

k2

⌋
, (3)

Now we have a multidimensional matrix Nd(x, y), shown in Equation (4),

Nd(x, y) =


p11d p12d · · · · · · p1Nd

p21d p22d · · · · · · p2Nd
...

...
. . .

...
...

...
. . .

...
pM1d pM2d · · · · · · pMNd

 (4)

where M and N are the size of the processed image, and d = 1, 2, 3, . . . j−
1 is the dimension of matrix N . Hence, the first dimension d represents the
original image after it has been filtered by kernel of scale 2, and the second
dimension represents the image filtered by kernel of scale 3, and so on until
reaching the highest scale j.

Given Nd(x, y) which represents the number of boxes necessary to cover
the whole image, we perform the log operation on all elements log(Nd(x, y))
and the corresponding scaling factor log(k). One of the advantages of the
logarithm operation is that it expands the values of the dark pixels in the
image while compressing the brighter values; also it compresses the dynamic
range of images with large variations in pixel values. Finally, the fractal slope
is determined from the least square linear regression line by computing the
Sums of Squares as in (Fig. 3).

2.4. Volumes of interest selection

Since FD transformed images tend to be edge enhanced, all CT images
were first transformed to a FD image to facilitate the processes of volume of
interest (VOI) extraction. The VOIs for fractal analysis were the same VOIs
as for the SUVmax and SUVavg. (Fig. 4-a and -b) show a CT image before
and after FD transformation, while (Fig. 4-c) is the windowed version with
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Figure 2: (a) Stage IB lung tumor volume of interest (VOI) enlarged to show texture, and
(b) surface of corresponding VOI showing the maximum and minimum peaks in image
texture intensity.

the window width and window grey level set in Hounsfield units for tumors
as 300 HU and 48 HU, respectively. It is worth noting that tumors with sizes
smaller than 1 cm – found in 2 cases – were excluded from the diagnostic
statistics due to inherent noise resolution of CT, which render such analysis
unreliable.

3. Results

The total FD values computed for all cases per stage and corresponding
FDG are shown in Table 1, where the higher the larger the tumor size and
more spread the higher the computed FD values. The FD was correlated
with the corresponding maximum and average tumor 18F-fluorodeoxyglucose
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Figure 3: Estimating the fractal slope FD using least-squares linear regression in a log-log
scale.

standardized uptake value (FDG-SUV) and tumor stage values measured
by PET. It exhibited a medium Spearman Rank correlation (r) with good
significance (p < 0.005) as shown in Table 2. Also, the fractal analysis of
nodal (NI) and metastasis (MI) involvement are illustrated in (Fig. 5).

Table 1: Correlations and significant values for
SUVavg, SUVmax, and Stage versus FD

r p
SUVavg vs FD 0.5732 0.0046
SUVmax vs FD 0.6294 0.0010
Stage vs FD 0.7831 <0.0001

A Mann-Whitney U test Pagano and Gauvreau [28] was applied to the
FD for the lymph node involvement (NI) and the metastatic involvement
(MI). Two groups were used NI = 0 i.e. node negative and node positive (i.e.
NI = 1 to 3). Similarly, two groups were used for metastatic involvement,
MI = 0 and MI = 1. The two tests showed good significance with p < 0.05
(pNI = 0.0139, pMI = 0.0194).

We empirically applied a threshold of FD > 1.955 to all cases and found
that for those who had a CT of stage I or II had a higher likelihood of the
NI and/or MI stage being upstaged by PET, Odds Ratio 5.38 (95% CI 0.99
-29.3). For those who are CT stage III or IV, and who have an FD below the
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Figure 4: A CT image (a) before FD transformation, (b) after FD transformation, and
(c) a windowed image after FD transformation.

Table 2: Lung tumor stage and corresponding average fractal dimension (FDavg) values
and 18F-fluorodeoxyglucose (SUVavg) per stage

Stage FDavg SUVavg

IA 1.91± 0.28 4.03± 1.67
IB 1.93± 0.33 6.49± 1.71
IIB 1.97± 0.33 6.73± 1.67
IIIA 2.02± 0.30 6.37± 0.92
IIIB 2.04± 0.32 7.40± 0.32
IV 2.04± 0.30 5.63± 0.55

same threshold they had an increased likelihood of the NI and/or MI stage
being down staged by PET, Odds Ratio: 7.33 (95% CI 0.48 -111.2).

4. Discussion

Solid tumors of the lung usually have better contrast with the surround-
ing tissue than many other solid tumors, such as those found in abdominal
and pelvic organs. This spatial information can be quantified by means of
anatomical image texture analysis, which derives from the fact that different
tissue types tend to have different properties. Investigating self-similarity of
these texture variations at increasingly small scales, namely fractal analysis,
can give indications on tumor heterogeneity in CT scans. Rather than merely
focusing on measuring tumor size, attenuation and perfusion, fractal analysis
can be considered as an additional non-invasive option to existing CT-based
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Figure 5: Higher fractal dimension (FD) values in CT images of NSCLC is associated with
advanced stage and greater FDG uptake on PET.

imaging biomarkers.
This study examined the use of fractal analysis in CT images of non-

small cell lung tumors. 56 CT images of lung tumors were analyzed and the
maximum FDavg was correlated with the maximum and average FDG-SUV
value and the nodal and metastatic stage. We found that the maximum
FD had a medium correlation with good significance (p < 0.005) with the
corresponding maximum and average FDG-SUV as determined by PET. Also
when FD was correlated with lung tumor stage it was found to have good
significance. Therefore, we propose that fractal analysis could be used as an
index of tumor severity as we have shown that the FD value correlates with
factors that describe tumor severity, the tumor stage and SUV.

Fractal analysis describes the complexity of a structure, the more complex
the structure the higher the maximum FD value. In this paper we have looked
at the relationship between fractal characteristics of texture and tumor stage,
which is the first time that such work has been carried out for conventional
non-contrast CT scans. We found that late stage tumors gave a higher FD
value, therefore it seems that the more irregular a structure the higher stage
it has. The association between the irregularity of a lesion and its aggression
has been speculated on for many years. Siegelman et al looked at edge
analysis of lesions on CT scans Siegelman et al. [29]. They classified the
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margins of lesions as follows: 1, sharp and smooth; 2, moderately smooth;
3, some irregular undulations; and 4, grossly irregular with spiculations. 52
out of 66 nodules classified as 1 were benign, but 14 (21.2%) were malignant.
57.7% with type 2 edge were benign. 88.5% of type 3 and 4 edges were
malignant. So their data indicated an association with irregular edge and
malignancy. Peiss et al. Peiss et al. [30] investigated the usefulness of fractal
analysis in the classification of lung tumors on chest radiographs. They
found there was a clear separation between benign and malignant lesions
with fractal distances of benign lesions being lower than those of malignant
lesions. They argue that this was due to the more homogeneous structure
of benign lesions. We assume that higher stage lesions are more irregular
because they are more likely to be hypoxic and thus necrotic. Also higher
stage lesions are more likely to have metastasized and in metastasis there is
local invasion of tissues, spread into lymphatics or blood vessels by malignant
cells and detachment this will undoubtedly give the tumor a more irregular
appearance Fidler [31].

We also found that the maximum FDavg had a good correlation with
the FDG-SUV as determined by PET. Cancer cells have a high proliferation
rate and have a higher glucose metabolism which means that FDG accumu-
lates and the SUV value is an index of tumor accumulation. PET has been
found to be more sensitive in detecting small volume disease with increased
metabolic activity Lardinois [32]. This is extremely useful information as
Eschmann et al found that the SUV can predict outcome in patients with
advanced stage NSSLC and found it to be an independent factor, and also
the incidence of distant metastases correlates with SUV average Eschmann
et al. [33]. They also found that survival tended to decrease with increasing
SUVavg. Downey RJ et al also investigated whether SUVs predicted survival
after lung cancer resection Downey et al. [34]. They found that the median
maximal SUV is a predictor of overall survival after resection. The PLUS
multicenter randomized trial looked at the effectiveness of PET in the pre-
operative assessment of patients with suspected NSCLC and found that the
use of PET to stage patients prevented unnecessary surgery in one in five
patients with suspected NSCLC van Tinteren et al. [35]. Therefore, the abil-
ity of FD to predict the likely SUV value will give extra information without
the need for a PET scan.

Research has found that when PET is used to stage cancer it upstages
most cancers but does down stage some. It is known overall that PET is
better than conventional CT in the staging of lung cancer van Tinteren et al.
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[35], Aukema et al. [36]. Lung cancer is said to be operable if the stage is
IIIA or less and many patients have both a CT and PET to be confirm their
stage. In clinical practice we propose that fractal analysis can be used to
identify which patients are more likely to benefit from having a PET. We
found that when the FD was calculated from non-contrast CT scans and a
cut off value of 1.955 was applied, those above this threshold who had a CT
stage of I or II were more likely to be upstage by the PET scan and those
below this threshold with a CT stage of III or IV were more likely to be down
staged.

If fractal analysis was used to select patients to go to PET scanning, this
would impact on clinical management decisions. It provides extra informa-
tion to physicians that could assist in making decisions earlier for appropriate
candidates for surgery. Considering that up to 50% of curative surgery for
suspected NSCLC is unsuccessful van Tinteren et al. [35], Aukema et al. [36],
it would assist in stopping futile operations. The limitation of the study is
that a relatively small number of images were analyzed, and a larger study
with more lung tumors would exhibit a wider range of textures. Also, results
of imaging studies can ultimately influence patient treatment and outcome,
thus progress in radiomics-based test development needs to be grounded
in sound scientific practice and be reproducible as well. Aspects involv-
ing practical reproducibility and replicability of computational data analysis
methods needs to be considered. Such measures include investigating the
self-similarity property of the proposed fractal analysis method on publicly
available imaging databases, which can assist in ensuring replicability and
generalizability of results.

5. Conclusion

The work indicates that higher FD in CT images of NSCLC is associated
with advanced stage and greater FDG uptake on PET. Measurements of
tumor FD on conventional CT examinations could potentially be used as a
prognostic marker and/or to select patients for PET.

Performing fractal analysis in CT images of lung tumors can provide
additional information about the likely tumor stage and likely FDG-SUV
value, which will be used to determine the most appropriate treatment for
patients with NSCLC. Also we propose that fractal analysis be used in clinical
practice to select patients to go for PET who are likely to have their cancer
stage altered by having a PET scan.
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