
applied
sciences

Article

A Deep Belief Network Classification Approach for Automatic
Diacritization of Arabic Text

Waref Almanaseer * , Mohammad Alshraideh and Omar Alkadi

����������
�������

Citation: Almanaseer, W.;

Alshraideh, M.; Alkadi, O. A Deep

Belief Network Classification

Approach for Automatic

Diacritization of Arabic Text. Appl.

Sci. 2021, 11, 5228. https://doi.org/

10.3390/app11115228

Academic Editor: Malik Yousef

Received: 20 April 2021

Accepted: 25 May 2021

Published: 4 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

King Abdullah II School for Information Technology, The University of Jordan, Amman 11942, Jordan;
mshridah@ju.edu.jo (M.A.); o.alkadi@ju.edu.jo (O.A.)
* Correspondence: warefalmanaseer@gmail.com

Abstract: Deep learning has emerged as a new area of machine learning research. It is an approach
that can learn features and hierarchical representation purely from data and has been successfully
applied to several fields such as images, sounds, text and motion. The techniques developed from
deep learning research have already been impacting the research on Natural Language Processing
(NLP). Arabic diacritics are vital components of Arabic text that remove ambiguity from words
and reinforce the meaning of the text. In this paper, a Deep Belief Network (DBN) is used as a
diacritizer for Arabic text. DBN is an algorithm among deep learning that has recently proved to be
very effective for a variety of machine learning problems. We evaluate the use of DBNs as classifiers
in automatic Arabic text diacritization. The DBN was trained to individually classify each input
letter with the corresponding diacritized version. Experiments were conducted using two benchmark
datasets, the LDC ATB3 and Tashkeela. Our best settings achieve a DER and WER of 2.21% and
6.73%, receptively, on the ATB3 benchmark with an improvement of 26% over the best published
results. On the Tashkeela benchmark, our system continues to achieve high accuracy with a DER of
1.79% and 14% improvement.

Keywords: deep learning; Deep Belief Network; Restricted Boltzmann Machine; natural language
processing; arabic diacritization

1. Introduction

Arabic is one of the six official languages of the United Nations (UN), which belongs
to the Semitic languages used by Arabs and Muslims all over the world. The estimated
Arabic speaking population in the world is around 400 million native speakers and 1 billion
Muslims with 30 different dialects [1]. The Arabic language alphabet consists of 28 letters
in addition to the Hamza. The orientation of writing in Arabic is from right to left, there is
no capitalization in Arabic and Arabic letters change shape according to their position in
the word [2].

In the Arabic language, diacritic marks are used to clarify how to pronounce a letter.
These diacritics are written either above or below a letter within a word as shown in Table 1.
Diacritization is important since it removes word ambiguity. For example, the word �

� �P
�
X it

is pronounced “darasa”, means studied and the word �
� �P

�
X it is pronounced "darsun" and

means a lesson. Both words have the same characters, however, adding the correct diacritic
marks presents two different meanings. The meaning of a sentence is greatly influenced by
the diacritization which is determined by the context of the sentence. Text diacritization
helps children and non-native speakers to learn Arabic properly.

The automation of diacritizing Arabic text is involved with finding an efficient method
to automatically diacritize Arabic text for different applications such as speech processing
applications. In order to remove the many levels of word ambiguity arisen of incorrect
diacritization or absence of diacritic marks in writing, lemmatizer tools have been used to to
alleviate this phenomenon, however, it is considered a stressful task to obtain a high quality

Appl. Sci. 2021, 11, 5228. https://doi.org/10.3390/app11115228 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3163-2137
https://doi.org/10.3390/app11115228
https://doi.org/10.3390/app11115228
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11115228
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11115228?type=check_update&version=1

Appl. Sci. 2021, 11, 5228 2 of 29

lemmatizer [3]. Automatic diacritization enhances the performance of many applications
in accordance with their accuracy and speed of processing and can be beneficial in other
Arabic processing steps such as Part-of-Speech (POS) tagging. Nevertheless, diacritization
suffers low accuracy as indicated in prior works [4]. This problem is considered challenging
because many words in Arabic have different meanings subject to their diacritization [5]
and correct diacritization requires analyzing the full sentence as it takes into account the
context of the sentence to diacritize words.

Table 1. Primary Arabic diacritics.

Name Shape Sound Unicode

Fatha �
H. /a/ 064E

Damma �
H. /u/ 064F

Kasra H.�
/i/ 0650

Fathatan �
H. /an/ 064B

Dammatan �
H. /un/ 064C

Kasratan H.�
/in/ 064D

Sukoun �
H. None 0652

Shadda �
H. Doubling 0651

Natural Language Processing (NLP) is defined as “an area of research and application
that explores how computers can be used to understand and manipulate natural language
text or speech to do useful things” [6]. Applications of NLP include a number of interesting
areas including sentiment analysis, machine translation, information retrieval, speech
recognition and expert systems. Many machine learning algorithms have been used to
provide an improved performance to NLP applications since the accuracy of some of the
NLP applications is very crucial.

It is worth understanding some basic aspects of text processing because high-quality
text processing is the key to creating robust NLP applications and therefore, improve the
way it is indexed or linked to other resources. Arabic NLP is gaining a lot of attention by
researchers and the particular reason for this is that the Arabic language is being widely
used in different applications and services. Processing text in the Arabic language and
Arabic NLP applications present researchers and developers with serious challenges due
to the linguistic structure, as it is considered a highly structured language that depends on
derivatives and morphology [2].

To make the language more usable, many NLP tasks were applied to the Arabic language.
Over the last decade, Arabic have begun to gain ground in the area of research within NLP.
Much work targeted different aspects related to how this language is processed, such as: mor-
phological analysis [7], lemmatization [3], text categorization [8], documents summarizing [9],
word segmentation [10], sentiment analysis [11] and automatic diacritization [12].

Automatic text diacritization is essential for a range of applications including Text-
to-Speech (TTS) [13], Automatic Speech Recognition (ASR) [14], machine translation [15],
information retrieval [12] and much more. These applications have been integrated with
deep learning to provide robust performance [16].

Roughly speaking, deep learning is a machine learning method based on neural net-
work architectures with multiple layers of processing units that provide a hierarchical
representation of the data by means of various convolutions. In deep learning, the neural
networks have various (deep) layers that enable learning. The more deep learning algo-
rithms learn, the better they perform. Deep learning has been widely used in different
fields and has made great progress in the areas of computer vision, speech recognition
and NLP [17]. The most substantial breakthrough in deep learning was in 2006, when
Hinton and Salakhutdino [18] introduced the Deep Belief Network (DBN) with multiple

Appl. Sci. 2021, 11, 5228 3 of 29

layers of Restricted Boltzmann Machines (RBMs). In general, a DBN is a probabilistic
generative model that is pretrained using a greedy layer-wise method. In this greedy
layer-wise algorithm, the DBN learns one layer at a time in an unsupervised way, and then
undergoes fine-tuning via supervised learning with backpropagation. DBNs were intro-
duced as a solution for the dilemmas encountered when using traditional neural networks
trained in deep architectures, such as slow-paced learning, becoming stuck in local minima,
and demanding a lot of training data for ameliorate learning.

Deep learning is a rich family of methods, encompassing Convolution Neural Network
(CNN), Auto-Encoders (AE), Recurrent Neural Network (RNN), Long Short-Term Memory
(LSTM), and Generative Adversarial Nets (GAN). While deep learning is extensively used
in NLP, only few studies have applied it to Arabic text diacritization. These studies mostly
use a hybrid system of deep learning and statistical or rule-based approaches. For example,
in [19], which is recently published research, a multi-components system for automatic
Arabic diacritization was proposed, the system uses an LSTM with rule-based corrector.

This work provides the first attempt to implement and examine the performance of
the DBN to automatically diacritize Arabic text. Unlike previous studies, this work does
not employ any prior morphological or contextual analysis nor requires post-processing
of data.

The remainder of this paper is organized as follows: Section 2 provides a review of
related work from literature on Arabic text diacritization. Section 3 provides a detailed back-
ground on the main concepts addressed in this work. Section 4 describes the dataset used.
The proposed methodology is detailed in Section 5. Section 6 outlines the experimental
settings and the results. Finally, Section 7 summarize the findings of this work.

2. Literature Review

Many approaches were used to tackle the diacritization problem; however, it is still an
open research problem that needs more work to improve its accuracy [20]. Diacritization
techniques are classified into three categories: rule-based, statistical systems and hybrid
systems. In literature, two standard evaluation metrics are used to measure the accuracy
and performance of these systems [4,21]: Diacritization Error Rate (DER) and Word Error
Rate (WER). DER is concerned with finding the proportion of letters which are incorrectly
diacritized, while WER finds the percentage of incorrectly diacritized words. The smaller
the error rate, the better the performance.

2.1. Rule-Based Systems

Rule-based systems formulate a set of rules that are used to derive a solution for a
problem. Human knowledge is utilized in this kind of approaches in the form of morpho-
logical analyzers, dictionaries and grammar modules. Rule-based techniques were used to
develop a morphological analyzer and a syntax analyzer for Arabic [22]. Furthermore, well-
formed rules were used to detect diacritics in Modern Standard Arabic (MSA) scripts [23].
In this work, the relation between each word with its part of speech is taken into account
as well as the relation between a word and its position in the sentence. The WER reported
by this work was 9.36%.

Metwally et al. [24], proposed a multi-layered approach to diacritze Arabic text.
The authors embed their knowledge of Arabic syntactic rules in order to decrease WER.
Experimental results show that the system achieves a syntactic WER of 9.4%.

Alserag is a rule-based diacritizer proposed by Alansary [25]. The system is based on
three components in order to provide fully diacritized Arabic words, these components are:
morphological analysis, syntactic analysis and morph-phonological processing. Alserag
depends on two resources; the Arabic diacritized dictionary and a set of linguistics rules
which guide the diacritization process. The system was evaluated on the LDC Arabic
Treebank dataset and has a WER and DER of 8.68% and 18.63%, respectively.

Appl. Sci. 2021, 11, 5228 4 of 29

2.2. Statistical Systems

Statistical approaches assign probabilities to sequences of words and characters based
on some statistics such as their frequency in the dataset [12]. A hidden markovian model
and Viterbi search algorithm were used in [26] to automatically find the optimal diacritic
marks of a sentence. Randomly selected Quranic verses were used to test the proposed
approach. The testing resulted with a DER of 4.1%.

An n-gram statistical language model was used in [27]. The author uses n-gram as a
smoothing technique that improves the accuracy of diacritization which is affected by the
data sparse problem.

Nelken and Shieber [28] also used a statistical approach in their proposed system
for Arabic diacritization. Specifically, they used a trigram language model for words and
letters. The proposed system achieves a 7.33% word accuracy without case ending and
23.61% with case ending.

2.3. Hybrid Systems

On the other hand, hybrid techniques have gained a lot of interest by NLP re-
searchers seeking to improve the diacritization problem for Arabic language. Hybrid
techniques combine the rule-based techniques with statistical techniques [12]. For instance,
Shaalan et al. [13], proposed a hybrid approach to build an Arabic diacritizer. The dia-
critizer uses a lexicon and a Support Vector Machine (SVM). Experimental results showed
that statistically based methods are promising in addressing the ambiguity resolution
problem in Arabic language diacritization.

Darwish et al. [29], used a Viterbi decoder and a support vector machine to guess the
diacritics of words and their case endings. Their experimentation results in a 3.29% and
12.77% WER without and with case endings.

Mijlad et al. [30] proposed a hybrid system that uses a deep LSTM network and Alkhalil
Morpho Sys 2 analyzer [31]. The analyzer associates each word with its morphological-syntactic
features. The purpose of using the analyzer is to take the word out of its context and provide all
possible diacritization forms for it along with its POS. At the same time, the LSTM is trained to
diacritize input text. Next, undiacritized words by the LSTM are selected with their context and
further associated with their corresponding diacritized forms and POS outputted by Alkhalil
Morpho Sys 2.

Rashwan et al. [32] used a deep learning framework with the Confused Sub-set
Resolution (CSR) method to improve the classification accuracy of diacritics and Arabic
PoS tagging using deep neural networks. The authors report a syntactic WER of 9.9% on
the LDC ATB3 corpus.

Abandah et al. [33] proposed a sequence transcription approach for the automatic
diacritization of Arabic text using RNN. The authors used a bidirectional LSTM network
that builds high-level linguistic abstractions of text and exploits long range context. This
approach does not require any lexical, morphological, or syntactical analysis to be per-
formed on the data before being processed by the RNN. For experimentation, the authors
used LDC ATB3, the simple version of the holy Quran and ten books drawn from the
Tashkeela dataset. Results achieved were as follows: for Tashkeela books the DER and
WER were 2.09% and 5.82%, respectively. For LDC ATB3 DER and WER were 2.72% and
9.07%, respectively.

Vergyri and Kirchhof [34] studied the effect of combining acoustic information with
morphological and contextual constraints to automatically diacritize letters with missing
diacritics in a text for use in acoustic model training for ASR systems. Experimental results
achieved a DER and WER of 11.5% and 27.3%, respectively.

Zitouni et al. [14] proposed a maximum entropy based approach that exploits the lexical,
segment-based and part-of-speech features to build a diacritization model. The authors
formulate the problem of diacritics restoration as a sequence classification problem such that
every character in a sequence is assigned a diacritic mark. The model was trained and tested
using LDC ATB3. The approach achieves DER and WER of 5.5% and 18%, respectively.

Appl. Sci. 2021, 11, 5228 5 of 29

Habash and Rambow [35] extend the use of their morphological analyzer to generate
all the possible analysis of a word. An SVM was used to help narrow down the list of
generated words and a language model was constructed to select the best solution from
the list. This approach was trained and tested using LDC ATB3 dataset. The experiments
achieve DER and WER of 4.8% and 14.9%, respectively.

Rashwan et al. [21] used a hybrid system of language factorizing and un-factorizing
textual features. In order to infer the most likely diacritization and phonetic transcription of
the input text, different diacritization system rely on factorizing text using morphological
analysis and case diacritics and then statistically recapitulate the most likely sequence
using lattice search. In this work, the most likely sequence is selected using the n-gram
probability estimation and A* lattice search. The reported DER and WER of this approach
using LDC ATB3 are 3.8% and 12.5%, respectively.

Another hybrid approach was proposed in [4]. This hybrid approach combines both
rule-based and data- driven techniques to diacritize MSA text and lattice of analyses,
using automatic correction, morphological analysis, POS tagging and out of vocabulary
diacritization components. The authors developed a lightweight statistical morphological
analyzer that is trained and tested on LDC ATB3 corpus. The POS tagger is concerned with
selecting the most likely sequence of analyses produced from the previous step. The POS
tagger disambiguate this lattice and selects the most likely diacritized form for the word
using Hidden Markov Models (HMM) and Viterbi algorithm. Their approach achieved
DER and WER of 3.6% and 11.4%, respectively.

Fadel et al. [36] did a critical review for the currently existing systems, measures and
resources for Arabic text diacritization. Moreover, the authors made available a clean
benchmark dataset that can be used for this problem. The data is mined from the Tashkeela
Corpus and it consists of 55K lines comprising about 2.3 M words. The results of this
review showed that Shakkala outperformed the best performing rule-based approaches,
primarily Mishkal and Harakat, with DER and WER of 3.73% and 11.19%, respectively.

Mubarak et al. [37] implemented a character level sequence-to-sequence model consist-
ing of an encoder, decoder LSTM RNN and attention mechanism. The model was trained
on a fixed length sliding window of n words. The diacritization of a word is selected
using a voting mechanism to pick the most common diacritized form of a word in different
contexts. It is worth mentioning that the authors used the freely available WikiNews corpus
of 18,300 words to test their model however, they do not identify their training data or refer
to its source. The DER is 1.21% and the WER is 4.49%.

Abandah and Abdel-karim [38] used four bidirectional LSTM layers to diacritize
Arabic text. The authors proposed alternative design and data encoding options to achieve
a fast and accurate solution for Arabic text diacritization. Experiments were done using
ATB3 and Tashkeela datasets. The best achieved DER is 2.46% and 1.97% for ATB3 and
Tashkeela, respectively.

Alqahtani et al. [39] used Temporal Convolutional Neural Networks (TCN) and a
variant of TCN called Acausal TCN (A-TCN) for diacritization in three different languages:
Arabic, Yoruba, and Vietnamese. A-TCN allows the model to learn from preceding and
proceeding context. TCN was deployed in this work as a character-level sequence model
because such models are able to better generalize to unseen data compared to word-based
models [40]. The authors experimented with LDC’s ATB3 corpus and reported a DER of
3% and WER of 10.2% for Arabic language.

In [19], Abbad and Xiong propose a multi-component architecture to address the
problem of automatic Arabic text diacritization. The first component of their architecture is
a multi-layered LSTM, the second is a rule-based corrector that exclude any impossible
daicritization on the output according to linguistic rules. Finally, the last component is a
word-level correcter that relies on the text and the distance information to fix diacritization
errors. The experimental results of the proposed system on the Tashkeela dataset achieve a
DER of 3.39%, WER of 9.94% and on the LDC ATB3 dataset a DER of 9.32%, WER of 28.51%.

Appl. Sci. 2021, 11, 5228 6 of 29

3. Preliminaries
3.1. Artificial Neural Networks and Deep Architectures

Artificial Neural Networks (ANN) are a branch of machine learning that seek to learn
tasks in order to solve problems and make decisions by simulating the behavior of the
human brain. McCulloch and Pitts (1943) were the first to model the human neuron [41].
After then, ANN have emerged in many disciplines such as classification, clustering,
pattern recognition and prediction due to its powerful self-learning and adaption

ANNs have an input layer and output layer. Between these two layers there are other
hidden layers that perform the mathematical computations. The layers of the ANN are
comprised of interconnected processing units that work together to learn and perform
very simple tasks, called neurons [42]. The ANN gains its power from the numerous
interconnections between these neurons. Each neuron in the network is able to receive
input signals, to process them, and to send an output signal. Each connection link between
neurons is associated with a weight that has information about the input signal [43].

The simplest form of an ANN has input vector x = (x1, x2, ..., xn), weight vector w, bias
b, and hw,b(x) is the output of the neural network. As the neurons learn from the training
data, each of w and b changes [44]. Each time the ANN runs, the weighted average values
of the vector is recalculated. This result is then passed into an activation function. The role
of the activation function is highly important as it allows the network to learn complex
patterns in the data, and it is responsible for determining whether a neuron should be
activated or not.

As mentioned earlier, each time the ANN runs the weights are recalculated or in
other words fine-tuned. Fine-tuning the weights of a neural network based on the error
rate obtained is known as Backpropagation. Backpropagation is the learning algorithm
concerned with training multi-layer perceptrons. Such algorithm helps to adjust the
weights of the neurons to get a more accurate output by computing the gradient of the
loss function [45]. Applying gradient descent to the loss function helps find weights that
achieve lower and lower error values, making the model gradually more accurate.

The simplest form of neural networks are the Feed-Forward Neural Networks (FFNNs).
Its name indicates the flow of input data; the input travels in one direction (forward) pass-
ing through the input nodes, then through the hidden nodes (if present), and finally exiting
through the output nodes [46]. This actively demonstrates that there is no “feedback” from
the outputs of the neurons towards the inputs throughout the network. Depending on
the number of the layers, FFNNs are categorized into two types, either “single layer” or
“multi-layer” [47]. Each node at every layer computes the sum of the inputs weight and
bias, and transfer this sum through an activation function such as sigmoid function to
acquire the output [48]. The training process of a neural network focuses on minimizing
some error value achieved via a cost function defined as a Mean Squared Error (MSE) or a
Sum of Squared Error (SSE).

As mentioned earlier, the backpropagation algorithm is one of the learning algorithms
accountable for adjusting the neural network weights with the objective of minimizing
the network’s error. Backpropagation is a popular supervised learning algorithm used for
training multi-layer FFNNs. The main principle of backpropagation is to train a multi-
layered neural network to model a function that reflects the internal representations of
data by adjusting the model’s parameters (weights and biases) to produce the expected
output. Technically speaking, backpropagation computes the gradient of the loss function
with respect to the weights of the network for a single input—output tuple [49].

The training algorithm consists of two phases [50,51]. In the first phase, known as the
forward phase, where weights are randomly initialized, and the input data are propagated
forward through the network, layer-wise. The forward phase terminates after computing
the output error [52]. In the second phase, called the backward phase, the calculated error
is propagated backward through the network. Then the network parameters are adjusted
such that the error is minimized and the neural network learns the training data.

Appl. Sci. 2021, 11, 5228 7 of 29

Despite its popularity, this gradient-based training algorithm is highly subject to
getting stuck into local minima [49], and is susceptible to parameter settings and to the
network initial weights, biases and architecture [53]. Therefore, evolutionary algorithms
were proposed by researchers as alternatives to gradient-based methods for training FFNNs.
Evolutionary algorithms are proved to be more efficient in escaping from local optima for
optimization problems. Evolutionary algorithms are appealing for ANN training since
they maintain a population of solutions during search in a search space, enabling extreme
exploration and massive parallelization.

Evolutionary neural networks, or “neuroevolution”, which utilize evolutionary algo-
rithms to optimize neural networks have been used to train FFNNs [54]. One of the earliest
methods for training FFNNs was using the Genetic Algorithm (GA) [55]. Results showed
that GA excel the backpropagation algorithm when applied on a classification problem.
This contribution of neuroevolution was followed by many other similar contributions
that employ nature inspired algorithms. For example, in [56] Mirjalili et al. proposed a
hybrid Particle Swarm Optimization (PSO) and Gravitational Search Algorithm (GSA) to
train FFNNs. Ant Colony Optimization (ACO) [57], Multiverse Optimizer (MVO) [58],
Cuckoo Search (CS) [59], Artificial Bee Colony (ABC) [60], Grey Wolf Optimizer (GWO) [61],
and many more nature inspired algorithms were adopted for the sake of training FFNNs
and overcoming the flaws of backpropagation.

Just as the human brain processes information in multiple stages of transformation
that reflect a deep architecture of the organization of the brain cortex, neural networks
have developed to act similarly. This is done via training deep multi-layer neural networks.
The architecture of such multi-layered neural networks consists of neural nets with many
hidden layers. In the case of a multi-layer neural network, depth corresponds to the number
of (hidden and output) layers. A neural network with deep architecture is known as Deep
Neural Networks (DNN), and training them is called as deep learning.

Deep learning is a branch of artificial intelligence that attempts to develop the tech-
niques that will allow computers to handle complex tasks such as recognition and pre-
diction at high performance [62]. Deep learning is able to learn more abstract features
in the higher levels of the representation as well as generalizing expressive data repre-
sentations [63]. As mentioned earlier, deep learning usually occurs in two phases: first,
unsupervised layer-wise training and second, supervised training. In the unsupervised
phase, each layer is added and trained greedy manner. Each layer uses the representation
learned by the previous layer as input that it tries to model and transform to a new and
better representation.

3.2. Deep Belief Network (DBN)

Although backpropagation provided a fairly efficient way of learning multiple layers
of nonlinear features, it has difficulty optimizing the weights in deep networks that contain
many layers of hidden units and it requires labeled training data, which is often expensive
to obtain.

DBNs overcome the limitations of backpropagation by using unsupervised learning
to create layers of feature detectors that model the statistical structure of the input data
without using any information about the required output. High-level feature detectors that
capture complicated higher-order statistical structure in the input data can then be used to
predict the labels. DBNs is one of the most important tools for deep learning constructed
from RBMs. RBMs have an efficient training procedure which makes them suitable as
building blocks for DBNs.

3.2.1. Restricted Boltzmann Machine (RBM)

RBMs are probabilistic graphical models that can be interpreted as stochastic neural
networks that can learn a probability distribution over its set of inputs. RBMs are a variant
of Boltzmann machines, with the restriction that their neurons must form a bipartite graph.
A bipartite graph is a graph whose vertices (V), can be divided into two independent

Appl. Sci. 2021, 11, 5228 8 of 29

sets, V1 (visible units) and V2 (hidden units), and every edge of the graph connects one
vertex in V1 to one vertex in V2. These two sets may have a symmetric connection between
them, and there are no connections between nodes within the same group [64] as shown
in Figure 1.

Figure 1. The structure of RBM.

An ordinary RBM accepts binary-values for the visible and hidden units. This type
of RBM is known as Bernoulli-Bernoulli RBM. The Bernoulli distribution is a discrete
distribution having two possible outcomes labelled by n = 0 and n = 1. If n = 1 it means
that the true value occurs with probability p and when n = 0 it means the false case occurs
with probability q = 1 − p, where 0 < p < 1 [65].

RBM is an energy-based model, it consists of n visible units and m hidden units, vector
v and h represent the state of visible and hidden units respectively. Given a set of state (v,
h), the energy of an RBM system is defined as [66]:

E(v, h) = −
n

∑
i=1

aivi −
m

∑
j=1

bjhj −
n

∑
i=1

m

∑
j=1

viWijhj, (1)

where vi represents the state of the ith visible unit, and hj represents the state of the jth
hidden unit. Wij represents connection weights of visible and hidden units. There are also
bias weights (offsets) ai for the visible units and bj for the hidden units.

When the parameters are defined, we can find the joint probability distribution of
(v, h) in terms of the energy function as:

P(v, h) =
1
Z

e−E(v,h) (2)

Z = ∑
v,h

e−E(v,h), (3)

where Z is a normalization constant. When the state of a visible unit is given, the activation
states of each of the hidden units are conditionally independent. Thereupon, the probability
of activation of the jth hidden unit is:

P(hj = 1|v) = σ

(
bj + ∑

ivi

Wij

)
, (4)

Appl. Sci. 2021, 11, 5228 9 of 29

where σ(x) = 1/(1 + e(−x) is a logistics sigmoid activation function. Similarly, given a
specific hidden state, h, the activation states of each visible unit are also conditionally
independent and the probability of the ith visible units of v given h is obtained by:

P(vi = 1|h) = σ

(
ai + ∑

jhj

Wij

)
. (5)

Differentiating a log-likelihood of training data with respect to W is computed
as follows:

∂logp(v)
∂Wij

=

〈
vihj

〉
data
−
〈

vihj

〉
model

, (6)

where
〈
.
〉

data and
〈
.
〉

model indicate expected values in the data or model distribution.
The learning rules for weights of the network in the log-likelihood-based training data can
be obtained as:

∆Wij = ε

(〈
vihj

〉
data
−
〈

vihj

〉
model

)
, (7)

where ε is the learning rate. Since there are no direct connections in the hidden layer of an
RBM, we can get an unbiased sample of

〈
vihj

〉
data easily. Unfortunately, it is difficult to

compute an unbiased sample of
〈
vihj

〉
model since it requires exponential time. To avoid this

problem, a fast learning algorithm, called Contrastive Divergence (CD) [67], is proposed
by Hinton [68]. CD sets visible variables as training data. Then the binary states of
hidden units are all computed in parallel using Equation (4). Once the states have been
chosen for the hidden units, a “reconstruction” is produced by setting each vi to 1 with a
probability given by Equation (5). In addition, weights are also adjusted in each training
pass as follows:

∆Wij = ε

(〈
vihj

〉
data
−
〈

vihj

〉
recon

)
. (8)〈

vihj
〉

data is the average value over all input data for each update and
〈
vihj

〉
recon is the

average value over reconstruction; it is considered as a good approximation to
〈
vihj

〉
model .

3.2.2. DBN Structure

The DBN is a neural network constructed from many layers of RBM that form a stack
of RBMs as shown in Figure 2. By stacking RBMs in this way, we can learn a higher level
representation of input data. DBNs were recently proposed by Hinton et al. [18], along
with an unsupervised greedy learning algorithm for constructing the network one layer
at a time. DBN, is presented as the state of the art of ANN in their traditional forms with
network topologies built from layers of neuron models but with more advanced learning
mechanics and deeper architecture, without modeling the detailed biological phenomena
constituting human intelligence.

In practice, the DBN training often consists of two steps: (1) greedy layer-wise pre-
training and (2) fine-tuning. Layer-wise pretraining involves training the model parameters
layer by layer via unsupervised training and CD algorithm [69]. In this initial step the
training starts by the lower-level RBM that receives the DBN inputs, and gradually moves
up in the hierarchy, until finally the RBM in top layer, containing the DBN outputs, is
trained. Therefore, learned features or output of the previous layer is used as the input of
the subsequent RBM layer [70].

In fine-tuning, as a final step after the training of each RBM, the network can be trained
in a supervised way using backpropagation algorithm in order to "fine-tune" the weights.
This greedy learning problem-solving approach of DBN is quick and efficient. It involves
making the optimal choice at each layer in the stack of RBMs, eventually finding a global
optimum as each layer consistently trained to get the optimum value [71].

Appl. Sci. 2021, 11, 5228 10 of 29

Figure 2. The DBN structure.

4. Dataset

The training, validation and testing data are drawn from the Tashkeela and LDC
Arabic Tree Bank part 3 (ATB3) corpuses. The Tashkeela corpus consists of 97 books written
in Classical Arabic (CA) style and 293 books written in Modern Standard Arabic (MSA)
style. The files are compiled from books, articles, news, speeches and school lessons.
The original Tashkeela corpus has over 75.6 million words, where about 67.2 million are
diacritized Arabic words. For the purposes of this study and to facilitate comparisons with
previous systems, we used ten books of the Tashkeela corpus. These books are summarized
in Table 2.

Table 2. Dataset statistics.

Book ID Book Name Size
(K Words)

Used
(K Words)

Letters Per
Word

Words Per
Sentence

Zero Diacritics
(%)

One Diacritic
(%)

Two Diacritics
(%)

1 Alahaad Walmathany 241 24 3.78 6.01 43.1 52.6 4.3
2 Majma Aldamanat 218 114 4.04 14.25 21.1 74.6 4.3
3 Sahyh Muslim 494 188 3.81 21.01 26.4 67.8 5.8
4 Alqawaed Labn Rajab 169 127 4.12 16.20 20.9 74.2 4.9
5 Alzawajer An Aqtiraf Alkabaer 284 261 3.94 9.57 21.6 72.3 6.1
6 Ghidaa Alalbab 316 281 3.99 9.28 21.9 72.2 5.9
7 Aljawharah Alnayyrah 385 201 3.99 22.77 20.7 74.1 5.2
8 Almadkhal Lilabdary 361 293 4.05 13.68 21.1 73.1 5.8
9 Durar Alhokam 646 375 3.83 24.22 21.5 73.2 5.3
10 Moghny Almohtaj 1306 838 3.93 9.63 20.5 73.9 5.6
11 LDC ATB3 305 225 4.64 11.31 39.8 54.8 5.4
12 Children stories 26 26 3.2 5.0 27.5 56.2 16.3

Average 396 K 246 K 3.94 13.58 25.5 68.3 6.2

LDC’s Arabic Tree Bank (ATB) consists of 599 distinct newswire stories collected
from different news agencies and newspapers, including the Agency France-Press (AFP),
Al-Hayat, and An-Nahar newspapers. The dataset, comprising about 305,000 words, is
written in MSA style. LDC’s ATB3 data statistics are provided in Table 2. These books
vary in their sizes, letters per word, and words per sentence, as well as the number of
non-diacritized letters which may have none, or one diacritic or even two diacritics. we
choose not to select random portions of sentences from the books, rather we experimented

Appl. Sci. 2021, 11, 5228 11 of 29

with all fully diacritized words in sentences. Except for book 1 since it has a high percentage
of non-diacritized letters, therefore we took 10% of its content. As can be noticed from
Table 2, the total number of words collected from all the datasets experimented with in this
work are about 5 million words. After preprocessing and removing non-diacritized words
this number is reduced to about 3 million words. The fourth column in Table 2 shows the
total number of words used after preprocessing.

5. Methodology

The only requirement to train in this architecture is a human-readable, fully diacritized
Arabic text without any additional morphological or syntactic information.

The proposed approach undergoes several steps to automatically diacritize Arabic
text using DBN. These steps are presented in Figure 3. The dataset is initially partitioned
into training, validation and testing. The training dataset is a sample of data used for
learning, that is to fit the model. The validation set is used to validate the trained model;
it provides an unbiased assessment of a model fit and tune the hyperparameters of the
model. Finally, the testing dataset represents the sample of data used to evaluate the
performance of the optimal model. As can be seen from Figure 3, the first step is to clean
and preprocess the dataset to ensure that the dataset is consistent, not corrupted and free
of errors. The second step is data encoding where in this step, an encoding scheme is used
to transform the data into a form that is appropriate for the algorithm to process. In the
third step, Borderline-SMOTE algorithm is applied to over-sample the input data in order
to solve the class imbalance found in the training data. The data is now ready to be input
to the DBN to start the training and validation process. The result of training yields the
best validated model where the testing dataset will be input to. Finally, the output which is
fully diacritized sentences is evaluated against some measures to indicate its performance.
The details of these steps are described in the following subsections.

Figure 3. The main steps followed in the proposed methodology.

Appl. Sci. 2021, 11, 5228 12 of 29

5.1. Data Cleaning and Preprocessing

One of the key components of the success of training a deep learning model is the
preparation of data. Most of the time and effort is usually put into this stage as it critically
affects the following stages of learning. Feeding a deep learning model clean and normal-
ized data grant proper learning. This section describes the steps followed to prepare our
data for training.

Data preprocessing in machine learning refers to the technique of preparing (cleaning
and organizing) the raw data to make it suitable for building better predictive machine
learning models. Typically, real-world data is incomplete, inconsistent, inaccurate (contains
errors or outliers), and often lacks specific attribute values/trends.

There are different ways to preprocess text data and it is most of the time language
dependent. In Arabic language, preprocessing tasks may include stop-words removal,
tokenization, normalization and morphological analysis as well as eliminating punctuation
marks and foreign symbols from the text. To unify the structures of our data because they
came from different sources, we performed a few preprocessing operations. Firstly, any
special characters, English letters and numbers are removed from text. Noisy data are also
removed such as incomplete words that have missing letters and scattered letters in the
text. Extra spaces were removed from each sentence as well.

In every text file, paragraphs are split into sentences having one sentence per line.
A paragraph is split into more than one sentence at the following ending punctuation
marks: : ‘.’, ‘:’, ‘,’, ‘«’, ‘»’, ‘?’, ‘;’, ‘[’, ‘]’, ‘{’, ‘}’. After that, the lines with length more than
10 words are split into lines of length no more than 10. This way we can limit memory usage,
and with this length we preserve the semantic structure of the text. The positions of the
diacritics were unified, where each diacritic was inserted directly after the corresponding
letter. When Shaddah and other diacritics were used, the sequence was unified, where the
Shaddah came first, followed by the other diacritics.

Normalization of Arabic letters is a common preprocessing step when dealing with
Arabic text. Normalization aims to normalize certain letters that have different forms in
the same word to one form. In this step, letters ‘

@’, ‘ @

’ and ‘

�
@’ are replaced with ‘ @’ while the

letter ‘ �
è’ is replaced with ‘ è’ and the letter ‘ø’ is replaced with ‘ø

’. Moreover, we remove

extra white spaces and Tatweel symbols. For example, the word Q�����J
J.» (kabı̄r ‘big’) has

Tatweel, whereas (Q�
J.») has no Tatweel.
Most of the preprocessing operations in this work were carried out using regular

expressions in Python. A Regular Expression (RegEx) is a highly specialized programming
language embedded inside Python [72]. RegEx uses a sequence of characters that defines a
search pattern to check if a particular string matches a given regular expression. Regexes
are commonly used for parsing text and searching text files for a precise pattern [73].
Likewise, regular expressions were written in this work to remove special characters and
noisy data as well as normalize specified letters into a single form.

5.2. Data Encoding

As mentioned earlier, a DBN is a stack of RBMs that process the input data at each
layer to discover hidden features of the input. Arabic input text (characters and diacritics)
is encoded in the Unicode code block 0600-06FF. In order to be processed by RBMs that
constitute the DBN model trained in this work, the Unicode of each character is mapped to
a bit code of 11 bits; 4 bits mask (1100) and 7 bits for the character. For example, the word
	
àñºË@ which means (the universe) is represented as follows:

11001000110︸ ︷︷ ︸
	
à

11001001000︸ ︷︷ ︸
ð

11001000011︸ ︷︷ ︸
¼

11001000100︸ ︷︷ ︸
È

11000100111︸ ︷︷ ︸
@

After having the data prepared, we take the clean diacritized text and create a sequence
that represents the diacritics class of every letter in every word. That is, each word

Appl. Sci. 2021, 11, 5228 13 of 29

has its own diacritic binary sequence of length 13 because we have 13 diacritic class
consisting of the primary 8 diacritics listed in Table 1, in addition to the Shadda mark
associated with the other diacritic as shown in Table 3. Then, we remove all diacritics
from text and create a Unicode representation for the undiacritized text. Eventually, we
have Unicode representation and diacritic binary sequence that correspond to our input.
Figure 4 provides an example that illustrates this operation using the word �

ñ
�
Ë which means

“if” in the English language.

Table 3. Diacritics marks class sequences.

Diacritic Mark Binary Class Sequence Class Number
�

H. 1000000000000 0
�

H. 0100000000000 1

H.�
0010000000000 2

�
H. 0001000000000 3
�

H. 0000100000000 4

H.�
0000010000000 5

�
H. 0000001000000 6
��

H. 0000000100000 7
��

H. 0000000010000 8
��

H. 0000000001000 9
��

H. 0000000000100 10
��

H. 0000000000010 11
��

H. 0000000000001 12

Figure 4. mapping sequence.

5.3. Data Oversampling

The problem of class imbalance is an essential difficulty in the construction of learning
systems. A dataset is called class imbalanced when the numbers of examples representing
each class are not equal [74]. The class with more examples is typically denoted as the
majority class, whereas the underrepresented class is called the minority class. The issue of

Appl. Sci. 2021, 11, 5228 14 of 29

class imbalance may seriously cause a negative impact on the accuracy of the learner [75].
To tackle this problem, oversampling method is used. Oversampling generates synthetic
examples to balance the distribution of data. SMOTE, Borderline-SMOTE, ADASYN and
random oversampling are examples of popular oversampling techniques.

In this work, class imbalance exists among diacritic marks that only appear at the end
of the word. These diacritics are “Fathatan, Dammatan, Kasratan” and “Shadda“ with the
former mentioned diacritics. Therefore the distribution of there appearance differs from
the other classes of diacritics that may appear at any position on the character in a word.
For example, “Fatha” diacritc mark may appear at the beginning, middle or end of the
word whereby “Shadda with Dammatan” may only appear at the end of the word.

To solve this problem, we used Borderline-SMOTE. It is a popular extension to SMOTE
which involves selecting those instances of the minority class that are mis-classified (near
the borderline), such as with a k-nearest neighbor classification model [76].

5.4. Training with DBN

This section describes the deep learning model designed to solve the automatic dia-
critization problem and how the DBN training occurs to generate diacritic marks. The task
is formulated as a sequence classification such that we predict a diacritic for each character
in the input.

Because DBN has strong feature detection and extraction capabilities, DBN is often
used for predictive classification problems. The classification DBN contains the top-level
associative memory that is actually a classification RBM. This allows for training the top
layer to generate class labels corresponding to the input data vector.

Classification DBNs require the observation labels to be available during training of
the top layer, so a training session involves first training the bottom layer, propagating the
data through the learned RBM, and then using that new transformed data as the training
data for the next RBM. This continues until the data has been propagated through the
second last trained RBM, where the labels are concatenated with the transformed data
and used to train the top layer associative memory. As previously explained, the learning
process of DBN is divided into two phases: unsupervised learning and supervised learning.
The propagation of data from the input layer to the top layer is the unsupervised learning
process, while for the contrary, it is supervised learning process. An initial goal for a DBN
is to propagate a different representation of the data to each stacked RBM. In theory, this
will allow each successive RBM to learn more abstract features in the data. When DBN
training is completed, we use labeled data to fine-tune all the parameters. The process of
fine-tuning is to achieve a global minimum for the loss function of the whole model.

5.4.1. Automatic Diacritization Using DBN

The function of any classification algorithm is to transfer the input data Xt to a certain
output Yt. For our DBN, the input layer v is the text samples, and the output of hn is the
feature learning results produced by DBN. Given that automatic diacritization of Arabic
text is a sequence-to-sequence problem, the classification RBM at the top layer holds the
diacritic marks (i.e., labels) thus it generates a sequence holding the corresponding label
for each input data Xt.

As demonstrated in Figure 5, the binary representation of input text is received by the
first RBM in the bottom layer (i.e., RBM1). RBM1 works on the received input text and
learns hidden features. Next, RBM1 propagates what it has learned to the subsequent RBM
on the next hidden layer, that is RBM2. RBM2 receives the output of RBM1 and treats it
as its input. Now RBM2 is ready to learn hidden features and propagates data to the next
layer. At each RBM layer, learned features of the previous layer is used as the input of the
subsequent RBM layer with each higher layer representing higher-level abstraction of the
input data. This greedy layer-wise training is conducted until reaching the highest hidden
layer which is RBM3.

Appl. Sci. 2021, 11, 5228 15 of 29

Next, the second training stage begins, fine-tuning, which consists of fine-tuning
the weights and supervised learning at the top layer. In this stage, a new layer is added
on top of the DBN, specifically, after RBM3 and removes the links in the top to down
direction. Labeled data are used to train the new layer, which acts as a classifier. As shown
in Figure 5, the labels are provided on top and include the diacritic marks listed in Table 3.
The backpropogation algorithm is used to learn the network weights and biases based
on labeled training examples. The trained weights and biases that are fine-tuned in each
layer correspond to features at different layers. Here, the learning goal is to minimize
the classification error given the labeled examples. Since the features obtained in the
unsupervised learning stage captures the properties of the data, they can be saved for
future classifications. After the supervised learning and backpropagation to train a DBN
for our classification problem, it is used to predict the diacritic mark for each character.

Many sequence transcription problems, including diacritization, require the exploita-
tion of future context. Future context can be exploited by maintaining long-term dependen-
cies, however, not all deep learning models are capable to keep long-term dependencies
and memorize them. Taking into account the potentials of DBNs to reconstruct input
through layering of RBMs, each RBM transfers to the next layer what it has learned from
the complete input and taking it to the next level. At each level, the RBM will dig deeper
once it receives its input from the previous layer and reprocess it again to generate its own,
consequently, full context will be covered once it reaches the top.

Figure 5. A schematic representation of the designed DBN model for the automatic diacritization of
Arabic text.

Appl. Sci. 2021, 11, 5228 16 of 29

5.4.2. Rectified Linear Unit (ReLU) Activation Function

Activation functions are the core of deep learning. These functions usually facilitate
deep neural networks by introducing non-linearity to the learning process. The non-
linearity feature gives the neural network the ability to succeed in training and learning
complex patterns [77]. Training a deep network with saturated activation functions has
been experimentally proved to be hard. Nowadays, non-saturated activation functions are
one of the key factors contributing to the success of the modern deep learning models.

Formally, ReLU function is defined as in Equation (9). Where xi is the input and yi
is the output from the activation function. The function returns 0 if it receives a negative
input, and for a positive value xi it returns that value back.

yi =

{
xi if xi ≥ 0
0 if xi < 0.

(9)

ReLU was first used in RBMs to improve their performance [78]. In [79] it was shown
that adding ReLU to the hidden layers of the network could improve the learning speed
of the deep network. Using ReLU, the vanishing gradient problem was avoided, this is
due to its ability to make the gradients at the positive values become constants and do not
vanish any more.

ReLU is known for its simplicity and light computation as there is no complicated
math. The advantage of these characteristics allow the model to train and run in a relatively
short time. Another advantageous characteristic of ReLU is its sparsity. Since ReLU gives
output zero for all negative inputs, it is likely for any given unit to not activate at all
which causes the network to be sparse. In a sparse network it is more likely that neurons
are actually processing valuable parts of a problem [80]. For example, a model that is
processing images of the universe may contain a neuron that is specialized to identity
stars. That specific neuron would not be activated if the model was processing images of
satellites instead. It is worth mentioning that sparsity results in concise models that often
have better predictive power and less noise [81].

5.5. Evaluation Metrics

Throughout our experiments, we evaluate the accuracy of the DBN using the Diacriti-
zation Error Rate (DER). DER is the percentage of characters with incorrectly predicted
diacritics. We also report the Word Error Rate (WER) of our best performing model. WER is
the percentage of incorrectly diacritized words. A word is considered incorrectly diacritized
if it has at least one incorrectly diacritized letter.

• Diacritization Error Rate (DER): which is the ration of characters with incorrectly
restored diacritics. DER can be calculated as follows:

DER = (1− TS/TG)× 100% (10)

where TS is the number of letters assigned correctly by the system, and TG is the
number of diacritized letters in the gold standard text.

• Word Error Rate (WER): the percentage of incorrectly diacritized white-space delim-
ited words. At least one letter in the word must have a diacritization error so that it
can be counted as incorrect.

WER = (1− TW/TG)× 100% (11)

where TW is the number of words fully and correctly diacritized by the system, and TG
is the number of diacritized words in the gold standard text.

Appl. Sci. 2021, 11, 5228 17 of 29

6. Experiments and Results
6.1. Experimental Settings

The challenge of training deep learning neural networks involves carefully selecting
and configuring the hyperparameters such as the learning rate, the number of hidden
layers, dropout, batch size and the number of epochs. These hyperparameters are pivotal
since they directly control the training and learning process, hence having important impact
on the performance of the model being trained. Table 4 summarizes the selected values
for these parameters in this work. The results of conducted experiments demonstrated
that the model performance is poor with a small batch size. With regard to the run-time
of the model with different batch sizes, the model with the small batch size requires a
relatively longer run-time. Therefore, selecting the appropriate batch size can improve the
performance of the DBN model and shorten the run-time. The selected batch size in this
study is 256.

Table 4. Parameters configuration of RBM layers and DBN.

Parameter RBM Layers DBN

Epochs 30 200
Batch 256 -
Learning rate 0.05 0.1
Dropout - 0.2
Number of nodes 250 -

For training and testing purposes, the LDC ATB3 benchmark dataset was used as
a single set for training and testing as previously recommended by the founders of the
benchmark [14], such that 70% of the data was allocated for training and 30% for testing.
We also follow our own approach of data split to avoid having an optimized DBN towards
the test set by having a separate development and test set. The data was randomly shuffled
and divided into a training set containing 80% of the sentences, and 20% for validation.
Afterwards, the DBN is tested with an unseen nor trained with test set. On the other
hand, using the K-fold cross-validation approach for partitioning data and validating the
DBN model not only significantly increased the training time but also resulted in poor
performance over the folds. Therefore, we adopt the previously discussed split.

The development platform used in this work was Google’s Colaboratory (Colab).
Colab is a free Jupyter notebook environment that runs entirely in the cloud and grants
users with powerful hardware such as GPUs and TPUs [82]. It also supports many popular
machine learning libraries and executes python code. The processor granted was an Nvidia
Tesla T4 GPU CUDA Version:11.2., and the deep learning framework was developed on
the Tensorflow back-end.

6.2. RBM Structure

The DBN is constructed from a stack of RBMs. In this work, and after a number of
experiments, we found the best architecture of the DBN with three hidden layers of RBMs.
We have also considered 30 epochs for the RBM learning procedure with mini-batches of
size 256.

As shown in Figure 6, the reconstruction error decreases with the increase in the
number of RBM epochs. The first RBM begins with the lowest reconstruction errors,
however, while training the other two layers outperform it. The reason for this behaviour
is because the number of nodes in the visible layer of the first RBM is large and the input
data is sparse. The two other RBM layers have only a slight increase in error at the first
5 epochs and then decreases gradually in the following epochs. It is clear from Figure 6
that as the number of RBM layers increase the reconstruction error tends to decrease and
stabilizes. Thus, it is concluded that the deeper the number of RBM layers is, the smaller

Appl. Sci. 2021, 11, 5228 18 of 29

the reconstruction error will be. Therefore, the optimal number of hidden layers for this
model is 3.

Figure 6. RBM reconstruction error.

6.3. Weight Noise Regularization

Deep learning neural networks are likely to quickly over-fit a training dataset with
minimal examples. To solve this problem to get improved generalization performance,
weight noise regularization is used. Specifically, dropout regularization method is used.
Dropout temporarily removes visible and hidden units and their connections in a neural
network. It has been known that dropout is a simple architectural way used to prevent
neural networks from over-fitting. In the case of RBM, it was proven in literature that
dropout RBMs are better than standard RBMs [83].

A number of experiments were conducted to show the performance of the DBN with
and without dropout. In all the experiments we have conducted, dropout method exhibit
outstanding performance. Therefore, we adopt this option in all the experiments. The best
dropout probability was 0.2.

Figure 7 shows the effect of training the DBN with dropout and without dropout.
The performance was evaluated against the DER metric for four selected books from the
Tashkeela books. This adaptation reduces over-fitting and improves the generalization of
deep neural networks.

6.4. Datasets Training

The dataset size is an important factor that affects the performance of the DBN.
Acquiring more training data allows the model to learn and perform better. Therefore, we
have conducted several experiments to study the effect of changing the training data size
on the performance. The experiments are done on the basis of individually training a DBN
for each book separately and on the training of a single DBN for all books combined into a
single dataset.

It can be seen from Figure 8 that the DER decreases as the training set size increases.
The average DER when training a DBN using all training sets is 1.79, which is lower than
the average DER for the separate DBNs training with an average DER of 2.98. The reason
for such improvement between the two approaches is that each RBM layer in a DBN learns

Appl. Sci. 2021, 11, 5228 19 of 29

the entire input once received. In other kinds of models like convolutional nets early layers
only detect simple patterns and later layers recombines them.This lets RBMs with more
feature detector units to have a high chance to learn information from the data distribution,
which is consequently affected by the amount of data received.

Figure 7. The reflex of dropout method on the training data.

According to conclusions found in the literature, the ATB3 dataset was better if trained
alone since the differences are large between CA and MSA. Further, it was recommended
that different networks should be used with each type. Therefore, in this work the ATB3
dataset was trained independently.

Figure 8. DER results for separate DBN and single DBN training of datasets.

Appl. Sci. 2021, 11, 5228 20 of 29

6.5. Comparisons with Literature

In this subsection, we present our results on ATB3 and Tashkeela datasets by com-
paring them to the best published systems. To the best of our knowledge, Abandah and
Abdel-Karim [38], is the system that has the best reported accuracy on the same datasets
used in our work. Table 5 provides a summary of our results along with the best published
systems in terms of DER, WER, DER-1 and WER-1.

Table 5. Diacritization results of previous systems and our system.

System Dataset All Diacritics Ignore Last

DER WER DER-1 WER-1

Nelken & Shieber (2005) [28] ATB3 12.8 23.6 6.5 7.3
Zitouni et al. (2006) [14] ATB3 5.5 18.0 2.5 7.9
Habash & Rambow (2007) [84] ATB3 4.8 14.9 2.2 5.5
Schlippe et al. (2008) [85] ATB3 4.3 19.9 1.7 6.8
Alghamdi et al.(2010) [86] ATB3 13.8 46.8 9.3 26.0
Rashwan et al. (2011) [21] ATB3 3.8 12.5 1.2 3.1
Said et al. (2013) [4] ATB3 3.6 11.4 1.6 4.4
Abandah et al. (2015) [33] ATB3 2.72 9.07 1.38 4.34
Alqahtani et al. (2019) [39] ATB3 2.8 8.2 - -
Abandah & Abdel-Karim (2019) [38] ATB3 2.46 8.12 1.24 3.81
Abbad & Xiong (2020) [19] ATB3 9.32 28.51 6.37 12.85
This work ATB3 2.21 6.73 1.2 2.89

Abandah (2015) [33] Tashkeela 2.09 5.82 1.28 3.54
Barqawi (2017) [87] Tashkeela 3.73 11.19 2.88 6.53
Abandah & Abdel-Karim (2019) [38] Tashkeela 1.97 5.13 1.22 3.13
Fadel et al. (2019b) [36] Tashkeela 2.60 7.69 2.11 4.57
Abbad & Xiong (2020) [19] Tashkeela 3.39 9.94 2.61 5.83
This work Tashkeela 1.79 4.63 1.15 2.13

To the best of our knowledge, Abandah et al. bidirectional LSTM based systems
in [33,38] has the best reported accuracy’s on the ATB3 and Taskeela datasets. In terms
of the ATB3 dataset our DBN model provides 19% DER improvement and 26% WER
improvement compared to Abandah’s et al. system in [33]. And a 10% DER improvement
and 17% WER compared to the system proposed in [38].

Looking at Table 5, it can be observed that the DER is also decreasing in this work
compared to the best published systems presented in the table. For the Tashkeela dataset,
our system provides 14% DER improvement and 20% WER improvement compared to
Abandah’s system in [33].

From Table 5, it is recognized that, over the past several years, diacritization perfor-
mance has been improved overall and our system has greatly improved the performance
of its predecessor while continuing its trend.

In 2015, Abandah et al. (2015) [33,38] reported the best accuracy on ATB3 and Tash-
keela datasets. For these two datasets, we report a higher improvement on error rates as
mentioned earlier. Recently, over the past 2 years, Fadel et al. (2019) [36], Alqahtani et al.
(2019), and Abbad and Xiong (2020) [19] have reported interesting results on the ATB3
and Tashkeela datasets. Still, our results outperform their reported results in terms of
DER, WER, DER-1 and WER-1. Our system provides 19% DER improvement compared
to Abandah el al. (2015), 18% WER improvement compared to Alqahtani et al. (2019),
and 76% DER improvement compared to Abbad and Xiong (2020) regarding the ATB3
dataset. Figures 9 and 10 present the results of using our DBN model and the Bi-LSTM
proposed in [33] on the Tashkeela corpus. Apparently, the DER and the WER of the DBN
model outperform the competing model of Bi-LSTM. The reason DBN works so well is
related to the fact that the pre-training phase in an unsupervised fashion of DBN improves

Appl. Sci. 2021, 11, 5228 21 of 29

model performance by avoiding over-fitting and enhancing the model generalization.
Furthermore, a DBN exploits hidden features and their context layer by layer.

Figure 9. DER results using DBN vs. Bi-LSTM on the Tashkeela books.

Figure 10. WER results using DBN vs. Bi-LSTM on the Tashkeela books.

The diacritic of the last character of the word usually depends on the POS tag making
it harder to diacritize and harder to get right because it is determined by the syntax.
Therefore, ignoring the diacritization of the last letter of every word results in lower error
rates and this is the approach followed in almost every research in this domain. It is thus
usual to report a variant of the above two mentioned metrics that ignore the last letter
(assumed to have no syntactic diacritics), denoted as DER-1 and WER-1. Figures 11 and 12
present the error rates for the Tashkeela books.

According to the results provided in Figures 11 and 12 we can note that the general
behavior of the error rates is as expected, which is decreasing. Once the diacritic mark of
the last character is ignored the error rate improves. The average DER drops from 1.79% to
1.15% and WER from 4.63% to 2.13%. An improvement of DER and WER of 36% and 54%,
respectively.

Appl. Sci. 2021, 11, 5228 22 of 29

Figure 11. DER and DER-1.

Figure 12. WER and WER-1.

6.6. Probability Distribution of Diacritics

As explained previously, the building blocks of a DBN are RBMs and each RBM
hidden layer learns a probability distribution over an input dataset presented to the visible
layer. So, a DBN can learn to probabilistically reconstruct its inputs whereby its layers
act as feature detectors. After this learning step, a DBN is trained with supervision to
perform classification. The objective of the DBN used here is to extract in depth features
and patterns in the original data in order to diacritize Arabic text. At the end of that,
the DBN should label each input with the correct class label.

Figure 13 provides an example of a correctly diacritized word from the children stories

corpus. The word is “
��

�

��
Ê

�
g

�
@” which is equivalent to the word "fly" in English. The word is 4

characters long, and each character has a diacritization mark. As can be seen from the figure,
there are probabilistic (P) values setting between the input and the class label for that input.

Appl. Sci. 2021, 11, 5228 23 of 29

In simple words, the DBN assigns a probability of its certainty of the class label associated
with that input. The higher the probability, the more certain the DBN is and the higher the
accuracy. For example, The DBN model assigns an activation probability of (p = 0.77) for
class 1 on the first input character, meaning that it has identified the diacritization mark

“Damma” with a certainty level of 77% for the first input character which is ‘

@’. The second

input character of the provided word ‘h’ is classified by the DBN as class 0 with activation
probability of (p = 0.94). Which implies that the model is 94% certain that the diacritization
mark for this input in this context is "Fatha". The same logic applies for the rest of the
characters in the input word provided in this example as well as it applies for longer words
and sentences.

Figure 14 shows the probability distribution of each diacritization mark for each
character in the input sequence in our example. RBMs that shape a DBN provide a closed-
form representation of the distribution underlying the training data. These RBMs are
trained to model the joint probability distribution of inputs and the corresponding labels,
both represented by the visible units of the RBM. Afterwards, a new input pattern can be
linked to the corresponding visible variables and the label can be predicted by sampling.
Therefore, we have a generative model that allows sampling from the learned distribution.

Figure 13. Example of how DBN probabilistically classify input.

Appl. Sci. 2021, 11, 5228 24 of 29

(a) First character class (Damma) (b) Second character class (Fatha)

(c) Third character class (Shadda-Kasra) (d) Fourth character class (Damma)

Figure 14. Probability distributions of class labels for the example word from the children’s stories corpus.

6.7. Children Stories: A Novel Corpus of Arabic Diacritized Text

Corpora are built for a wide range of applications such as modeling language use for
linguistics research, material for education, or training data for NLP applications. Research
in NLP for Arabic language is drawing attention as it is becoming one of the most common
languages used on the internet. Today, there are more than 168 million Arabic internet users
worldwide and more than 2.1 billion Arabic indexed Web pages [88] and the availability of
resources and tools is being developed [89].

The availability of a diacritized Arabic corpus has been a challenge for researchers
in order to progress in new directions to solve the problem of automatic Arabic text
diacritization. The matter of diacritized text is crucial for new learners to read Arabic and
to the applications of text-to-speech systems.

There is only a small number of benchmark corpora for this purpose that limit the
scope of dealing with it. In this paper, we present a corpus called children’s stories.
The corpus is freely available, it contains 26 thousands MSA words collected from children’s
stories books. The size of this corpus may be considered moderate or in some cases small
compared to the size of the benchmarks used for Arabic NLP applications, however, it is
unique as it has a different linguistic structure due to the type of books it is collected from
and the audience these books were written to. Thus, more features may be extracted using
machine learning algorithms. This resource can be leveraged for educational purposes and
for researchers to use in developing NLP applications.

Our DBN model was tested using the children’s stories dataset and the performance
of the model was evaluated in terms of DER, WER, DER-1 and WER-1. Table 6 illustrates
the results of this evaluation. As observed from the results, we get an improvement of
44% DER and 57% WER when ignoring the diacritic mark of the last character. Clearly,
we have an improvement that we cannot underrate and is directly related to the type of

Appl. Sci. 2021, 11, 5228 25 of 29

text we are dealing with and the linguistic structure it has. For example, most of the text
written in children books and stories has a lot of rhymes, and the words and sentences are
ordinarily shorter.

Table 6. Diacritization results of our DBN model on the children’s stories dataset.

Dataset
All Diacritics Ignore Last

DER WER DER-1 WER-1

Children stories 2.4 6.57 1.33 2.83

7. Conclusions and Future Work

In this study, we present a novel diacritization approach based on a DBN. DBN uses a
network structure composed of multiple RBMs, which is more effective for data modeling
and feature extraction. The key idea of DBN is to use a greedy layer-wise training to
extract deep hierarchical representation of input data, followed by fine-tuning to achieve
competitive classification performance.

This approach adds diacritic marks to undiacritized Arabic text using DBN. We
have used two well-known benchmarks, which are Tashkeela and LDC ATB3. From the
Tashkeela benchmark, we used ten books that are used in previous research by other
researchers so that we can compare our results to theirs. Our results were evaluated in
terms of DER and WER.

Experimentation on the ATB3 yielded a DER of 2.21%, which made an improvement
of 19% over state-of-the-art systems. In addition, the WER scored by our approach was
6.73% outperforming competitive systems with an improvement of 26%.

On the Tashkeela benchmark, our system continues to achieve high accuracy. Our
DBN-based approach scored a DER of 1.79% and 14% improvement over the best published
systems. On the other hand, the WER recorded for our system was 4.63% and achieved
an improvement of 20% over the best published system. With respect to the DER-1 and
WER-1 metrics which imply ignoring the last letter diacritization mark, our system makes
an improvement of DER and WER of 36% and 54%, respectively.

This approach outperforms state-of-the-art approaches. It does not require the use of
rule-based techniques nor morphological, syntactic or diacritic rules. More importantly,
it does not require any post-processing. When compared to state-of-the-art approaches,
the DBN model significantly improves error rates for both the ATB3 and Tashkeela datasets.

The limitation of freely available resources including the availability of diacritized
Arabic corpus creates a challenge and sometimes a barrier for researchers that work in this
problem domain. Therefore, we presented in this work a new corpus of diacritized Arabic
text collected from children’s stories that consists of about 26K MSA words.

For future work, we plan to incorporate a hybrid approach of RBMs, DBNs and LSTMs
as a preprocessing approach to examine to what extent it may make any considerable
improvement to the performance of the DBN. It is expected that when using a DBN for
preprocessing and then employing it with an LSTM for training a deep learning model
the accuracy will improve considerably. We will further use the principal component
analysis technique for feature extraction as it may be useful for a better understanding of
the performance of the implemented approach. Moreover, to gain a better understanding
of the effectiveness of the implemented approach we will use the K-fold cross validation
approach with evolutionary techniques to optimize the training time and performance.
In addition to that, a comparative work with different types of neural networks could be
researched. Furthermore, we seek to extend the range of the children’s stories corpus to a
couple more thousands or millions of words.

Appl. Sci. 2021, 11, 5228 26 of 29

Author Contributions: Conceptualization, W.A., M.A. and O.A.; Methodology, W.A.; Validation,
W.A.; Data curation, W.A.; Writing—original draft preparation, W.A.; Writing—review and editing,
W.A., M.A and O.A.; Supervision M.A. and O.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available in a publicly accessible repository at http://tashkeela.
sourceforge.net (accessed on 9 November 2020).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Albirini, A. Modern Arabic Sociolinguistics: Diglossia, Variation, Codeswitching, Attitudes and Identity; Routledge: London, UK, 2016 .
2. Farghaly, A.; Shaalan, K. Arabic natural language processing: Challenges and solutions. ACM Trans. Asian Lang. Inf. Process.

(TALIP) 2009, 8, 1–22. [CrossRef]
3. Freihat, A.A.; Abbas, M.; Bella, G.; Giunchiglia, F. Towards an Optimal Solution to Lemmatization in Arabic. Procedia Comput. Sci.

2018, 142, 132–140. [CrossRef]
4. Said, A.; El-Sharqwi, M.; Chalabi, A.; Kamal, E. A hybrid approach for Arabic diacritization. In International Conference on

Application of Natural Language to Information Systems; Springer: Berlin/Heidelberg, Germany, 2013; pp. 53–64.
5. Hamed, O.; Zesch, T. A Survey and Comparative Study of Arabic Diacritization Tools. J. Lang. Technol. Comput. Linguist. 2017,

32, 27–47.
6. Chowdhury, G.G. Natural language processing. Annu. Rev. Inf. Sci. Technol. 2003, 37, 51–89. [CrossRef]
7. Saad, M.K.; Ashour, W.M. Arabic morphological tools for text mining. In Proceedings of the Corpora, 6th ArchEng International

Symposiums, EEECS’10 the 6th International Symposium on Electrical and Electronics Engineering and Computer Science, Lefke,
Cyprus, 25–26 November 2010; Volume 18.

8. Alsaleem, S. Automated Arabic Text Categorization Using SVM and NB. Int. Arab. J. e Technol. 2011, 2, 124–128.
9. Belkebir, R.; Guessoum, A. A supervised approach to arabic text summarization using adaboost. In New Contributions in

Information Systems and Technologies; Springer: Berlin/Heidelberg, Germany, 2015; pp. 227–236.
10. Almuhareb, A.; Alsanie, W.; Al-Thubaity, A. Arabic word segmentation with long short-term memory neural networks and word

embedding. IEEE Access 2019, 7, 12879–12887. [CrossRef]
11. Duwairi, R.M.; Qarqaz, I. Arabic sentiment analysis using supervised classification. In Proceedings of the 2014 International

Conference on Future Internet of Things and Cloud, Barcelona, Spain, 27–29 August 2014; pp. 579–583.
12. Azmi, A.M.; Almajed, R.S. A survey of automatic Arabic diacritization techniques. Nat. Lang. Eng. 2015, 21, 477. [CrossRef]
13. Shaalan, K.; Bakr, H.M.A.; Ziedan, I. A hybrid approach for building Arabic diacritizer. In Proceedings of the EACL 2009

Workshop on Computational Approaches to Semitic Languages, Athens, Greece, 31 March 2009; pp. 27–35.
14. Zitouni, I.; Sorensen, J.; Sarikaya, R. Maximum entropy based restoration of Arabic diacritics. In Proceedings of the 21st

International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics,
Sydney, Australia, 17–21 July 2006; pp. 577–584.

15. Diab, M.; Ghoneim, M.; Habash, N. Arabic diacritization in the context of statistical machine translation. In Proceedings of the
MT-Summit, Copenhagen , Denmark, 10–14 September 2007.

16. Rubi, C.R. A review: Speech recognition with deep learning methods. Int. J. Comput. Sci. Mob. Comput. 2015, 4, 1017–1024.
17. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
18. Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [CrossRef]
19. Abbad, H.; Xiong, S. Multi-components System for Automatic Arabic Diacritization. In European Conference on Information

Retrieval; Springer: Berlin/Heidelberg, Germany, 2020; pp. 341–355.
20. Maamouri, M.; Bies, A.; Kulick, S. Diacritization: A challenge to Arabic treebank annotation and parsing. In Proceedings of the

Conference of the Machine Translation SIG of the British Computer Society, London, UK , 23 October 2006 ; pp. 35–47.
21. Rashwan, M.A.; Al-Badrashiny, M.A.; Attia, M.; Abdou, S.M.; Rafea, A. A stochastic Arabic diacritizer based on a hybrid of

factorized and unfactorized textual features. IEEE Trans. Audio Speech Lang. Process. 2010, 19, 166–175. [CrossRef]
22. Shaalan, K. Rule-based approach in Arabic natural language processing. Int. J. Inf. Commun. Technol. (IJICT) 2010, 3, 11–19.
23. Fashwan, A.; Alansary, S. A Rule Based Method for Adding Case Ending Diacritics for Modern Standard Arabic Texts. Available

online: https://www.researchgate.net/publication/322223483_A_Rule_Based_System_for_Detecting_the_Syntactic_Diacritics_
in_Modern_Standard_Arabic_Texts (accessed on 10 April 2021).

24. Metwally, A.S.; Rashwan, M.A.; Atiya, A.F. A multi-layered approach for Arabic text diacritization. In Proceedings of the
2016 IEEE International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, 5–7 July 2016;
pp. 389–393.

http://tashkeela.source forge.net
http://tashkeela.source forge.net
http://doi.org/10.1145/1644879.1644881
http://dx.doi.org/10.1016/j.procs.2018.10.468
http://dx.doi.org/10.1002/aris.1440370103
http://dx.doi.org/10.1109/ACCESS.2019.2893460
http://dx.doi.org/10.1017/S1351324913000284
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1109/TASL.2010.2045240
https://www.researchgate.net/publication/322223483_A_Rule_Based_System_for_Detecting_the_Syntactic_Diacritics_in_Modern_Standard_Arabic_Texts
https://www.researchgate.net/publication/322223483_A_Rule_Based_System_for_Detecting_the_Syntactic_Diacritics_in_Modern_Standard_Arabic_Texts

Appl. Sci. 2021, 11, 5228 27 of 29

25. Alansary, S. Alserag: An automatic diacritization system for arabic. In Intelligent Natural Language Processing: Trends and
Applications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 523–543.

26. Elshafei, M.; Al-Muhtaseb, H.; Alghamdi, M. Statistical Methods for Automatic Diacritization of Arabic Text. Available
online: https://www.researchgate.net/publication/236115959_Statistical_Methods_for_Automatic_diacritization_of_Arabic_text
(accessed on 10 April 2021).

27. Hifny, Y. Smoothing techniques for Arabic diacritics restoration. Proc. Conf. Lang. Eng. 2012, 1, 6–12.
28. Nelken, R.; Shieber, S.M. Arabic diacritization using weighted finite-state transducers. In Proceedings of the ACL Workshop on

Computational Approaches to Semitic Languages, Ann Arbor, MI, USA, 29 June 2005; pp. 79–86.
29. Darwish, K.; Mubarak, H.; Abdelali, A. Arabic diacritization: Stats, rules, and hacks. In Proceedings of the Third Arabic Natural

Language Processing Workshop, Valencia, Spain, 3 April 2017; pp. 9–17.
30. Mijlad, A.; Younoussi, Y.E. Arabic Text Diacritization: Overview and Solution. pp. 1–7. Available online: https://dl.acm.org/

doi/10.1145/3368756.3369088 (accessed on 10 April 2021).
31. Boudchiche, M.; Mazroui, A.; Bebah, M.O.A.O.; Lakhouaja, A.; Boudlal, A. AlKhalil Morpho Sys 2: A robust Arabic morpho-

syntactic analyzer. J. King Saud Univ. Comput. Inf. Sci. 2017, 29, 141–146. [CrossRef]
32. Rashwan, M.A.; Al Sallab, A.A.; Raafat, H.M.; Rafea, A. Deep learning framework with confused sub-set resolution architecture

for automatic Arabic diacritization. IEEE/ACM Trans. Audio Speech Lang. Process. 2015, 23, 505–516. [CrossRef]
33. Abandah, G.A.; Graves, A.; Al-Shagoor, B.; Arabiyat, A.; Jamour, F.; Al-Taee, M. Automatic diacritization of Arabic text using

recurrent neural networks. Int. J. Doc. Anal. Recognit. (IJDAR) 2015, 18, 183–197. [CrossRef]
34. Vergyri, D.; Kirchhoff, K. Automatic Diacritization of Arabic for Acoustic Modeling in Speech Recognition; Technical Report; Washington

University Seattle Department of Electrical Engineering: Seattle, WA, USA, 2004.
35. Habash, N.; Rambow, O. Arabic tokenization, part-of-speech tagging and morphological disambiguation in one fell swoop. In

Proceedings of the 43rd Annual Meeting of the Association for computational Linguistics (ACL’05), Ann Arbor, MI, USA, 25–30
June 2005; pp. 573–580.

36. Fadel, A.; Tuffaha, I.; Al-Ayyoub, M. Arabic text diacritization using deep neural networks. In Proceedings of the 2019 2nd
International Conference on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, 1–3 May 2019; pp.
1–7.

37. Mubarak, H.; Abdelali, A.; Sajjad, H.; Samih, Y.; Darwish, K. Highly effective arabic diacritization using sequence to sequence
modeling. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 2390–2395.

38. Abandah, G.; Abdel-Karim, A. Accurate and fast recurrent neural network solution for the automatic diacritization of Arabic text.
Jordan. J. Comp. Inform. Technol. 2020, 6, 103–121. [CrossRef]

39. Alqahtani, S.; Mishra, A.; Diab, M. Efficient Convolutional Neural Networks for Diacritic Restoration. arXiv 2019,
arXiv:1912.06900.

40. Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling.
arXiv 2018, arXiv:1803.01271.

41. McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133.
[CrossRef]

42. Hassoun, M.H. Fundamentals of Artificial Neural Networks; MIT Press: Cambridge, MA, USA, 1995 .
43. Wang, S.C. Artificial neural network. In Interdisciplinary Computing in JAVA Programming; Springer: Berlin/Heidelberg, Germany,

2003; pp. 81–100.
44. Hua, Y.; Guo, J.; Zhao, H. Deep belief networks and deep learning. In Proceedings of the 2015 International Conference on

Intelligent Computing and Internet of Things, Harbin, China, 17–18 January 2015; pp. 1–4.
45. Werbos, P.J. Backpropagation through time: What it does and how to do it. Proc. IEEE 1990, 78, 1550–1560. [CrossRef]
46. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989,

2, 359–366. [CrossRef]
47. Sazlı, M.H. A brief review of feed-forward neural networks. Commun. Fac. Sci. Univ. Ank. 2006, 50, 11–17. [CrossRef]
48. Wu, H.; Zhou, Y.; Luo, Q.; Basset, M.A. Training feedforward neural networks using symbiotic organisms search algorithm.

Comput. Intell. Neurosci. 2016, 9063065 . [CrossRef]
49. Nawi, N.M.; Ransing, R.S.; Salleh, M.N.M.; Ghazali, R.; Hamid, N.A. An improved back propagation neural network algorithm on

classification problems. In Database Theory and Application, Bio-Science and Bio-Technology; Springer: Berlin/Heidelberg, Germany,
2010; pp. 177–188.

50. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.
[CrossRef]

51. Werbos, P.J. The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting; John Wiley & Sons:
Hoboken, NJ, USA, 1994; Volume 1.

52. Simon, H. Neural Networks: A Comprehensive Foundation; Prentice Hall: Hoboken, NJ, USA, 1999 .
53. Rocha, M.; Cortez, P.; Neves, J. Evolutionary neural network learning. In Portuguese Conference on Artificial Intelligence; Springer:

Berlin/Heidelberg, Germany, 2003; pp. 24–28.

https://www.researchgate.net/publication/236115959_Statistical_Methods_for_Automatic_diacritization_of_Arabic_text
https://dl.acm.org/doi/10.1145/3368756.3369088
https://dl.acm.org/doi/10.1145/3368756.3369088
http://dx.doi.org/10.1016/j.jksuci.2016.05.002
http://dx.doi.org/10.1109/TASLP.2015.2395255
http://dx.doi.org/10.1007/s10032-015-0242-2
http://dx.doi.org/10.5455/jjcit.71-1567402817
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1109/5.58337
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1501/0003168
http://dx.doi.org/10.1155/2016/9063065
http://dx.doi.org/10.1038/323533a0

Appl. Sci. 2021, 11, 5228 28 of 29

54. Stanley, K.O.; Clune, J.; Lehman, J.; Miikkulainen, R. Designing neural networks through neuroevolution. Nat. Mach. Intell. 2019,
1, 24–35. [CrossRef]

55. Montana, D.J.; Davis, L. Training Feedforward Neural Networks Using Genetic Algorithms. Available online: https://www.ijcai.
org/Proceedings/89-1/Papers/122.pdf (accessed on 10 April 2021).

56. Mirjalili, S.; Hashim, S.Z.M.; Sardroudi, H.M. Training feedforward neural networks using hybrid particle swarm optimization
and gravitational search algorithm. Appl. Math. Comput. 2012, 218, 11125–11137. [CrossRef]

57. Blum, C.; Socha, K. Training feed-forward neural networks with ant colony optimization: An application to pattern classification.
In Proceedings of the Fifth International Conference on Hybrid Intelligent Systems (HIS’05), Rio de Janerio, Brazil, 6–9 November
2005.

58. Faris, H.; Aljarah, I.; Mirjalili, S. Training feedforward neural networks using multi-verse optimizer for binary classification
problems. Appl. Intell. 2016, 45, 322–332. [CrossRef]

59. Valian, E.; Mohanna, S.; Tavakoli, S. Improved cuckoo search algorithm for feedforward neural network training. Int. J. Artif.
Intell. Appl. 2011, 2, 36–43.

60. Karaboga, D.; Akay, B.; Ozturk, C. Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks.
In International Conference on Modeling Decisions for Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2007; pp. 318–329.

61. Mirjalili, S. How effective is the Grey Wolf optimizer in training multi-layer perceptrons. Appl. Intell. 2015, 43, 150–161. [CrossRef]
62. Bengio, Y. Learning Deep Architectures for AI; Now Publishers Inc.: Delft, The Netherlands, 2009 .
63. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed representations of words and phrases and their composition-

ality. arXiv 2013, arXiv:1310.4546.
64. Zepeda-Mendoza, M.L.; Resendis-Antonio, O., Bipartite Graph. In Encyclopedia of Systems Biology; Dubitzky, W., Wolkenhauer, O.,

Cho, K.H., Yokota, H., Eds.; Springer: New York, NY, USA, 2013; pp. 147–148. [CrossRef]
65. Weisstein, E.W. Bernoulli Distribution. 2002. Available online: https://mathworld.wolfram.com/ (accessed on 10 April 2021).
66. Fischer, A.; Igel, C. An introduction to restricted Boltzmann machines. In Iberoamerican Congress on Pattern Recognition; Springer:

Berlin/Heidelberg, Germany, 2012; pp. 14–36.
67. Hinton, G.E. Training products of experts by minimizing contrastive divergence. Neural Comput. 2002, 14, 1771–1800. [CrossRef]

[PubMed]
68. Hinton, G.E. A practical guide to training restricted Boltzmann machines. In Neural Networks: Tricks of the Trade; Springer:

Berlin/Heidelberg, Germany, 2012; pp. 599–619.
69. Morabito, F.C.; Campolo, M.; Ieracitano, C.; Mammone, N. Deep Learning Approaches to Electrophysiological Multivariate

Time-Series Analysis. In Artificial Intelligence in the Age of Neural Networks and Brain Computing; Elsevier: Amsterdam, The
Netherlands, 2019; pp. 219–243.

70. Yepes, A.J.; MacKinlay, A.; Bedo, J.; Garvani, R.; Chen, Q. Deep belief networks and biomedical text categorisation. In Proceedings
of the Australasian Language Technology Association Workshop 2014, Melbourne, Australia, 26–28 November 2014; pp. 123–127.

71. Lu, P.; Guo, S.; Zhang, H.; Li, Q.; Wang, Y.; Wang, Y.; Qi, L. Research on improved depth belief network-based prediction of
cardiovascular diseases. J. Healthc. Eng. 2018, 8954878. [CrossRef]

72. Goyvaerts, J.; Levithan, S. Regular Expressions Cookbook; O’reilly: Newton, MA, USA, 2012.
73. Chapman, C.; Stolee, K.T. Exploring regular expression usage and context in Python. In Proceedings of the 25th International

Symposium on Software Testing and Analysis, Saarbrucken, Germany, 18–20 July 2016; pp. 282–293.
74. He, H.; Garcia, E.A. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284.
75. Faris, H.; Abukhurma, R.; Almanaseer, W.; Saadeh, M.; Mora, A.M.; Castillo, P.A.; Aljarah, I. Improving financial bankruptcy

prediction in a highly imbalanced class distribution using oversampling and ensemble learning: A case from the Spanish market.
Prog. Artif. Intell. 2020, 9, 31–53. [CrossRef]

76. Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In
International Conference on Intelligent Computing; Springer: Berlin/Heidelberg, Germany, 2005; pp. 878–887.

77. Yu, Y.; Adu, K.; Tashi, N.; Anokye, P.; Wang, X.; Ayidzoe, M.A. Rmaf: Relu-memristor-like activation function for deep learning.
IEEE Access 2020, 8, 72727–72741. [CrossRef]

78. Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. Available online: https://www.cs.toronto.
edu/~fritz/absps/reluICML.pdf (accessed on 10 April 2021).

79. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, Fort Lauderdale, FL, USA, 11–13 April
2011; pp. 315–323.

80. Ide, H.; Kurita, T. Improvement of learning for CNN with ReLU activation by sparse regularization. In Proceedings of the 2017
International Joint Conference on Neural Networks (IJCNN), Anchorage, AL, USA, 14–19 May 2017; pp. 2684–2691.

81. Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375.
82. Bisong, E. Google colaboratory. In Building Machine Learning and Deep Learning Models on Google Cloud Platform; Springer:

Berlin/Heidelberg, Germany, 2019; pp. 59–64.
83. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

http://dx.doi.org/10.1038/s42256-018-0006-z
https://www.ijcai.org/Proceedings/89-1/Papers/122.pdf
https://www.ijcai.org/Proceedings/89-1/Papers/122.pdf
http://dx.doi.org/10.1016/j.amc.2012.04.069
http://dx.doi.org/10.1007/s10489-016-0767-1
http://dx.doi.org/10.1007/s10489-014-0645-7
http://dx.doi.org/10.1007/978-1-4419-9863-7_1370
https://mathworld.wolfram.com/
http://dx.doi.org/10.1162/089976602760128018
http://www.ncbi.nlm.nih.gov/pubmed/12180402
http://dx.doi.org/10.1155/2018/8954878
http://dx.doi.org/10.1007/s13748-019-00197-9
http://dx.doi.org/10.1109/ACCESS.2020.2987829
https://www.cs.toronto.edu/~fritz/absps/reluICML.pdf
https://www.cs.toronto.edu/~fritz/absps/reluICML.pdf

Appl. Sci. 2021, 11, 5228 29 of 29

84. Habash, N.; Rambow, O. Arabic Diacritization through Full Morphological Tagging. Available online: https://www.aclweb.org/
anthology/N07-2014/ (accessed on 10 April 2021).

85. Schlippe, T.; Nguyen, T.; Vogel, S. Diacritization as a machine translation problem and as a sequence labeling problem. AMTA-
2008. MT at work. In Proceedings of the Eighth Conference of the Association for Machine Translation in the Americas, Waikiki,
HI, USA, 21–25 October 2008; pp. 270–278.

86. Alghamdi, M.; Muzaffar, Z.; Alhakami, H. Automatic restoration of arabic diacritics: A simple, purely statistical approach. Arab.
J. Sci. Eng. 2010, 35, 125.

87. Barqawi, A.; Zerrouki, T. Shakkala, Arabic Text Vocalization. Available online: https://github.com/Barqawiz/Shakkala2017
(accessed on 10 April 2021).

88. Alarifi, A.; Alghamdi, M.; Zarour, M.; Aloqail, B.; Alraqibah, H.; Alsadhan, K.; Alkwai, L. Estimating the size of Arabic indexed
web content. Sci. Res. Essays 2012, 7, 2472–2483.

89. Habash, N.Y. Introduction to Arabic natural language processing. Synth. Lect. Hum. Lang. Technol. 2010, 3, 1–187. [CrossRef]

https://www.aclweb.org/anthology/N07-2014/
https://www.aclweb.org/anthology/N07-2014/
https://github.com/Barqawiz/Shakkala2017
http://dx.doi.org/10.2200/S00277ED1V01Y201008HLT010

	Introduction
	Literature Review
	Rule-Based Systems
	 Statistical Systems
	Hybrid Systems

	Preliminaries
	Artificial Neural Networks and Deep Architectures
	Deep Belief Network (DBN)
	Restricted Boltzmann Machine (RBM)
	DBN Structure

	Dataset
	Methodology
	Data Cleaning and Preprocessing
	Data Encoding
	Data Oversampling
	Training with DBN
	Automatic Diacritization Using DBN
	Rectified Linear Unit (ReLU) Activation Function

	Evaluation Metrics

	Experiments and Results
	Experimental Settings
	RBM Structure
	Weight Noise Regularization
	Datasets Training
	Comparisons with Literature
	Probability Distribution of Diacritics
	Children Stories: A Novel Corpus of Arabic Diacritized Text

	Conclusions and Future Work
	References

