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Abstract

While Large Vision-Language Models (LVLMs) like GPT-4 and Gemini demonstrate significant potential, their utilization in the
medical domain remains largely unexplored. This is due to challenges attributed to prolonged training and language generation
issues. Imbalances within medical Visual Question Answering (VQA) datasets further complicate the integration of LVLMs. In
this paper, we present a novel approach named MiniMedGPT (Mini Medical Generative Pretrained Transformer). Inspired by
MiniGPT4-v2, MiniMedGPT is specifically designed for efficient medical VQA. The framework of MiniMedGPT is built upon both
medical and generic pretrained Large Language Models and features an end-to-end versatile fine-tuning pipeline that enables the
alignment of medical VQA data in just 30 minutes within a single-stage framework. To address language generation shortcomings
and dataset imbalances, we employ Gemini Vision Pro and MediCap using them as an auxiliary component. Through comprehen-
sive benchmarking and evaluations against 6 prominent medical VQA models across 2 well-known datasets, our approach brings
an improved performance with the least number of trainable parameters against competitors across various performance metrics.
This work can help train junior clinicians and has the potential to serve as a decision support tool for experienced radiologists.1

Keywords: Medical VQA, Large Vision-Language Model, MedGPT, Generative Pre-trained Transformers, Natural Language
Processing.

1. Introduction

In the ever-evolving landscape of healthcare, the increase in
patient numbers coupled with an increasing influx of medical
practitioners poses a significant challenge for physicians. Not
only must they meet the demands of their profession, but they
are also tasked with guiding the next generation of healthcare
professionals. Specifically, in the United States, where the pop-
ulation is approximately 335 million, the number of practicing
radiologists hovers around 50 thousand, representing a notable
minority [1]. Moreover, the enrollment in medical schools has
been steadily rising, with over 96 thousand students currently
enrolled — a growth of approximately 18% since 2012 [2].

In response to this growing demand for medical services
and the shortage of specialized professionals, researchers have
turned to automation as a potential solution. The goal is to
streamline diagnostic processes, thereby reducing both time
and costs. Although early automation attempts, such as the
INTERNIST-1 expert system [3], showed promise, they were
limited by the computational capabilities of their time and
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quickly became outdated. However, recent years have wit-
nessed a resurgence of interest in automated diagnostic systems,
fueled by advances in deep learning. In particular, Large Lan-
guage Models (LLMs) have emerged as powerful tools, lever-
aging self-supervised learning techniques to achieve remark-
able proficiency in understanding and generating natural lan-
guage. This resurgence is made possible by the greater avail-
ability of computational resources and vast amounts of data. In
particular, models such as ChatGPT [4] have demonstrated re-
markable capabilities in conversational AI, albeit primarily in
text-based interactions. However, despite their linguistic pow-
ers, these models lack an understanding of visual data, a critical
limitation in medical diagnostics where images play a central
role. Consequently, there is a growing interest in extending the
capabilities of LLMs to include visual understanding, leading to
the development of Large Visual Language Models (LVLMs).
These models hold immense promise in providing valuable in-
formation to both healthcare professionals and patients, partic-
ularly in tasks such as VQ, where understanding both textual
and visual information is essential. Despite that, the integration
of LVLMs into the medical domain presents unique challenges.
Training LVLMs requires significant computational resources
and time, and their performance may suffer when applied to
medical data due to the inherent noise and imbalance in med-
ical datasets. Additionally, the lack of large-scale annotated
datasets poses a significant hurdle to the development and eval-
uation of LVLMs in medical applications.
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Figure 1: Proposed MiniMedGPT Model: The diagram illustrates input CT
image encoding combined with implicit knowledge from Gemini and MediCap
(star sign). The small dotted box shows the engine output before the textual
decoder, while the large dotted box displays the predicted answer.

This work explores the capabilities of LVLMs in the con-
text of Visual Question Answerin (VQA) medical imaging.
Specifically, we propose Mini Medical Generative Pretrained
Transformer, or MiniMedGPT, a method that enables faster
training while maintaining or even surpassing the performance
of existing approaches. Additionally, we address the challenges
posed by imbalanced medical data through an end-to-end train-
ing scheme, leveraging knowledge engines to compensate for
the lack of large-scale datasets. A general pipeline of the pro-
posed model is shown in Figure 1. Our contributions are three-
fold: a) an LVLM optimized for efficient training is constructed
that is capable of converging and completing training in approx-
imately 30 minutes; b) LVLM is trained on medical imaging
data, specifically targeting the medical VQA task, and devel-
ops a universal pipeline for processing medical VQA data; c)
caption techniques are incorporated using advanced tools like
Google’s Gemini Pro and MediCap to enhance both input data
and predictions.

2. Related Works

2.1. Large Language Models

The emergence of LLMs, especially transformer architec-
tures, has revolutionized Natural Language Processing. Early
models like GPT-2 and BERT [5] laid the foundations, but faced
challenges with extensive contexts, diverse responses, and rare
queries. BERT’s tokenization method also struggled with num-
ber representation [6]. GPT-3, with 175 billion parameters
compared to 1.5 billion in GPT-2 and 110 million in BERT,
significantly improved handling longer contexts and generat-
ing diverse responses. Its success inspired the development of
LLMs like PaLM, Megatron Turing NLG, BLOOM, Chinchilla,
and LLaMA [7], and LLaMA shows promise as a base textual
decoder for our work.

2.2. Large Vision Language Models

As LLMs transformed natural language processing, LVLMs
emerged for visual understanding. CLIP [8] by OpenAI bridges

visual and language comprehension without task-specific train-
ing, though it struggles with domain-specific queries. Models
like Bootstrapped Language Image Pretraining [9] followed, in-
tegrating visual and textual data. PaLM-E [10], with 562 billion
parameters, furthered this integration by combining real-world
sensory inputs with language. Large Language-and-Vision As-
sistant [11] and KOSMOS-1 [12] advanced multimodal mod-
els capable of contextual learning and zero-shot tasks. Visual
ChatGPT [13] and MM-REACT [14] combined vision models
with ChatGPT for enhanced multimodal reasoning. MiniGPT4-
v2 [15] and Vicuna [16] align visual encoders with LLMs, en-
abling detailed image descriptions and creative tasks. While
these innovations impact general domains, our goal is to de-
velop efficient LVLMs for medical applications based on in-
sights from MiniGPT4-v2 and LLaVA.

2.3. Medical Chatbots

The rise of chatbots across industries, particularly in health-
care, holds great promise [17]. Chatbots can offer basic medical
information, symptom screening, and personalized health ad-
vice, improving accessibility and patient care. LLMs like GPT-
3, with their human-like language understanding, are valuable
for healthcare interactions. However, specific challenges, es-
pecially in Visual Question Answering (VQA) for medicine,
persist. While open-domain VQA has advanced, addressing
medical-specific challenges, such as designing goal-oriented
systems and curating clinical datasets, is essential. For in-
stance, [18] developed a generative model for medical VQA,
PMC-LLaMA, and curated the PMC-VQA dataset. [19] cre-
ated M212, using self-supervised learning for radiographic im-
ages. [20] introduced Med-VINT, tailored for small medical
datasets, with parameter-efficient fine-tuning. Despite these
efforts, efficient use of LVLMs in medicine remains underex-
plored. This work proposes the use of LVLM with single lin-
ear layers to map visual and textual components in medicine.
Leveraging MiniGPT4-v2, we aim to build a model optimized
for medical VQA, utilizing Gemini Vision Pro and MediCap
to enhance output quality. This is the first attempt to harness
LVLM efficiency in healthcare communication.

3. Methodology

The main objective is to seamlessly integrate and establish
robust mappings between medical images and their correspond-
ing question-answer pairs. To achieve this, we devise a compre-
hensive methodology that includes two key components: the
visual encoder and the textual decoder. For the visual encoder,
we employ a state-of-the-art pre-trained Vision Transformer
(ViT) model with a patch size of 32 (ViT32), sourced from
the cutting-edge EVA-CLIP framework. This model, obtained
through the adapter Parameter-Efficient Fine-Tuning (PEFT)
technique, harnesses the vast reservoir of knowledge accumu-
lated during its training. Using ViT32, MiniMedGPT capital-
izes on the nuanced understanding of visual data acquired by
the model, seamlessly aligning with the complexities inherent
in medical images. Moreover, the utilization of PEFT ensures
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efficient adaptation to domain-specific nuances, enhancing the
model’s capability to extract salient features from medical im-
agery.

In the realm of textual decoding, MiniMedGPT leverages the
formidable capabilities of the Large Language Model (LLM),
specifically the LLaMA architecture [7]. We obtain LLaMA
weights from the open source LLaMA2-7B model, fine-tuned
using the Parameter-Efficient Fine-Tuning (PEFT) technique
known as DoRA for Low Rank Adaptation (LoRA) [21]. This
fine-tuned version of LLaMA, adeptly trained in medical text
data, exhibits a nuanced understanding of the intricate seman-
tics prevalent in medical discourse. By incorporating LLaMA
as our textual decoder, MiniMedGPT benefits from its prowess
in diverse linguistic tasks and its tailored expertise in medi-
cal language comprehension. The language and vision models
within MiniMedGPT are intricately connected through a lin-
ear projection layer. This architectural design, inspired by the
methodology employed in MiniGPT4-v2, facilitates efficient
training while maintaining computational speed and efficacy.
By only training additional DoRA weights and establishing a
streamlined connection through the linear projection layer and
freezing the other layers, MiniMedGPT achieves optimal con-
vergence and performance, as depicted in Figure 2.

3.1. Middle Projections

In complex deep learning structures such as Convolutional
Neural Networks (CNNs) and Vision Transformers (ViTs), the
initial layers excel at discerning fine features such as edges
and corners, while the subsequent layers specialize in grasp-
ing broader elements in an image, like entire objects. The base
architecture for MiniMedGPT only takes the embedding of the
image from the last layer and in return loses crucial informa-
tion at different scales. This is more critical in medical images,
where diagnostics is based on small intricacies that can some-
times be challenging to differentiate. To solve this problem,
we introduce the idea of Middle Projections (MPs), where the
output of each transformer layer in our visual encoder is indi-
vidually processed and learned to fully capture all scales in the
input image. First, we abstractly define the base visual encoder
(BVE) as follows:

BVE = LinearN(TLN(TLN−1(. . . (TL1(Patching(I)))))) (1)

Where Linear ∈ RdTransformer×dOut denotes the trainable linear pro-
jection layer at the end of the encoder, TL denotes a Trans-
former Layer, I ∈ RH×W×C denotes the Image as the input, and
N ∈ N denotes the number of TLs. Here, N = 39, dTransformer =

1418, and dOut = 5672.
Patching ∈ RdInPatch×dOutPatch denotes the patching and flatten-

ing operations for preprocessing the image before entering the
TLs. The number of patches in the height direction, NH ∈ N,
is calculated as the height of the image divided by the patch
size, denoted as P ∈ N. Similarly, the number of patches in
the width direction, NW ∈ N, is computed as the width of the
image divided by the size of the patch P. The total number of
patches, Npatches ∈ N, is then determined by multiplying NH and
NW . The dimensionality of the patch embeddings, referred to

as the patch dimension, is denoted by dproj ∈ N. Here, dInPatch =

NH × NW ×C, and dInPatch = dproj. We define the visual encoder
after MPs as the following:

MPs = [MP1 (TL1(I)) ∥MP2 (TL2(I)) ∥ . . . ∥MPN (TLN(I))] (2)

FullVE = [MPs∥BVE] (3)

Where MP ∈ RdTransformer×dMP , dMP = 64, and ∥ denotes the con-
catenation operation. FullVisualEncoderOutput is also denoted
as <IMAGE> embedding.

3.2. Medical Visual Question Answering Alignment

Following obtaining the <IMAGE> embedding, we tokenized
the embedding and structure it to fit the LLM input prompt.
This step allows the model to learn the overall structure of the
medical data, and this is done quickly given that the model
already incorporates pretrained components, the ViT32 and
LLaMA. The input will look like the following:

### Human: <IMAGE><IMAGE-FEATURES><\IMAGE>

<QUESTION> ### Assistant:

For multiple questions relating to the same image, it would
look like the following:

### Human: <IMAGE><IMAGE-FEATURES><\IMAGE>

<QUESTION> ### Assistant: <PREDICTED-ANSWER>

### Human: <QUESTION> ### Assistant:

To further enhance the quality of our answers, we utilize
Gemini and MediCap as an implicit knowledge engine. The
modified version of the prompt looks as follows:

### Human: <IMAGE><IMAGE-FEATURES><\IMAGE>

Based on the following caption <CAPTION>,

<QUESTION> ### Assistant:

3.3. Masked Language Modeling

We opted for cross-entropy loss, a widely adopted measure
that effectively penalizes deviations between predicted and ac-
tual distributions for the Masked Language Modelling (MLM)
task of training an LLM. Let x = (x1, x2, . . . , xn) be a sequence
of input tokens, and let y = (y1, y2, . . . , yn) be the correspond-
ing sequence of target tokens, where some of the tokens in x are
masked. With V being the size of the vocabulary, pθ(yi | x) be-
ing the probability assigned by the model to the target token yi

given the input sequence x,M being the set of positions in the
sequence that are masked, and 1{i∈M} being an indicator func-
tion that is 1 if the position i is masked and 0 otherwise. The
cross-entropy loss for masked language modeling is given by

L = −

n∑
i=1

1{i∈M} log pθ(yi | x) (4)

Expanding the probability pθ(yi | x) as the softmax of the
logits zi, gives

pθ(yi | x) =
exp(zi,yi )∑V
v=1 exp(zi,v)

(5)

and substituting (5)) in (4)), we have the following.
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Figure 2: Complete Framework of the Proposed MiniMedGPT Model.

Algorithm 1 MiniMedGPT Algorithm

1: Input: VQA dataset D with components V (visual/image),
Q (question), A (answer), and C (caption)

2: Freeze(EVA-CLIP ViT32)
3: Freeze(LLaMA2-7B)
4: Seed← 42
5: V ← Resize(V , 448 × 448, Bicubic interpolation)
6: V ← Normalize(V)
7: FV ← EVA-CLIP ViT32(V)
8: LV ← Linear/L(FV )
9: Prompt ← ”###Human: <Image><LV></Image>Based

on the following caption <C>, <Q>###Assistant:”
10: Initialize LLaMA2-7B
11: Batch size← 64
12: Epochs← 5
13: Optimizer← AdamW(10−4, 0.9, 0.999)
14: for Epoch in range(Epochs) do
15: for Batch in dataset with Batch size do
16: Âi ← LLaMA2-7B(Prompt)
17: L L(Ai, Âi)← Ai: L = −

∑
i Ai log(Âi)

18: Backpropagate(Optimizer)
19: end for
20: end for

L = −

n∑
i=1

1{i∈M}

zi,yi − log
V∑

v=1

exp(zi,v)

 (6)

Algorithm 1 shows the process of this phase in detail.

4. Experimental Design

4.1. Datasets

4.1.1. VQA-RAD
VQA-RAD [22] is a radiology-specific pivotal data set de-

signed to facilitate training and evaluation of VQA models in
the medical domain. With a meticulously curated collection of

315 radiology images, VQA-RAD offers a balanced represen-
tation of crucial anatomical regions such as the head, chest, and
abdomen. This dataset includes 3,515 question-answer pairs,
providing a diverse array of queries pertinent to radiological in-
terpretation. The significance of VQA-RAD lies not only in its
breadth, but also in the depth of its annotations. With 11 dis-
tinct types of questions covering various aspects of radiological
analysis, including modality, color, organ system, abnormality
detection, and positional reasoning, this dataset offers a com-
prehensive framework for evaluating VQA algorithms’ profi-
ciency in medical imaging interpretation.

4.1.2. SLAKE
SLAKE [23] emerges as a noteworthy addition to the land-

scape of medical VQA datasets, offering unparalleled rich-
ness in semantic annotations and structural medical knowledge.
Comprising an English subset with 642 meticulously curated
images, SLAKE encompasses more than 7,000 meticulously
curated question–answer pairs. What sets SLAKE apart is its
emphasis on semantic accuracy, with labels meticulously an-
notated by experienced physicians. This dataset introduces a
novel structural medical knowledge base, enhancing the inter-
pretability and clinical relevance of VQA algorithms trained
on SLAKE. Moreover, SLAKE broadens the scope of exist-
ing datasets by encompassing a diverse range of parts of the
human body, including the abdomen, chest, head, neck, and
pelvis, providing a comprehensive canvas for exploring medi-
cal image analysis and interpretation.

4.1.3. PMC-VQA
PMC-VQA [20] stands as a monumental endeavor in bridg-

ing the gap between biomedical knowledge and visual un-
derstanding. This expansive dataset comprises a staggering
collection of 227,000 VQA pairs derived from 149,000 im-
ages spanning diverse modalities. PMC-VQA’s creation pro-
cess leverages PMC-QA, a comprehensive biomedical dataset
sourced from PubMedCentral’s OpenAccess subset. What dis-
tinguishes PMC-VQA is its fusion of textual biomedical con-
tent with visual imagery, facilitated by advanced language mod-
els like ChatGPT. By inputting image captions from PMC-OA

4



into ChatGPT and generating question-answer pairs based on
the content, PMC-VQA not only enriches the pool of avail-
able VQA data, but also augments it with clinically relevant
queries grounded in biomedical literature. Together, VQA-
RAD, SLAKE, and PMC-VQA represent invaluable resources
to advance medical VQA research, providing diverse and metic-
ulously curated datasets that not only challenge the capabilities
of VQA algorithms, but also offer insights into the intersection
of biomedical knowledge and visual understanding.

4.2. Data Preprocessing

In our methodology, we employed the BLIP-2 image proces-
sor [9] to handle the visual component of our dataset. With
precision and care, we subjected the images to a series of trans-
formations aimed at optimizing their quality and compatibility
with our model. First, we resized the images to dimensions of
448×448 pixels utilizing Bicubic interpolation. This resizing
operation serves to standardize the dimensions of all images in
the dataset, ensuring uniformity and facilitating seamless inte-
gration into our processing pipeline. Following resizing, we
normalized the images using a carefully chosen mean and stan-
dard deviation. The normalization process is crucial for en-
suring consistency and stability in the model training process.
We adopted mean values of [0.4816, 0.4578, 0.4082] and stan-
dard deviation values of [0.2686, 0.2613, 0.2758] for the RGB
channels. These values, learned from generic data, reflect sta-
tistical properties common in natural images, which aids in the
convergence and generalization of our model. Simultaneously,
we employed the BLIP caption processor to process the tex-
tual component of our data. Furthermore, we removed noisy
punctuation marks that could potentially introduce ambiguity
or noise into our text data. Additionally, we imposed a trunca-
tion limit on the length of sentences, filtering out any captions
exceeding 300 words.

4.3. Experimental Setup

Our linear projection training commenced with a chosen
batch size of 8, a parameter that strikes a balance between com-
putational efficiency and gradient stability. During the course
of five epochs, our model was iteratively refined, improving its
predictive capabilities through exposure to training data. For
optimization, we employed the AdamW optimizer, a variant of
the Adam optimizer that incorporates weight decay to mitigate
overfitting. Setting the learning rate at 10−4, β1 at 0.9, and β2
at 0.999, we struck a balance between rapid convergence and
stability in parameter updates. A key aspect of our training
strategy involved a linear warm-up with cosine annealing. This
technique, coupled with a minimum learning rate of 80−5 and a
warm-up learning rate of 10−6, ensured a smooth transition into
the optimization process, mitigating the risk of erratic behavior
in the early stages of training. With 5000 warm-up steps and
a weight decay of 0.05, we maintained a delicate equilibrium
between exploration and exploitation throughout the training
process. To protect against variability resulting from random
initialization, we enforced consistency across all experimental
runs by fixing the random seed at 42. The pretraining of our

model was exclusively based on the PMC-VQA dataset, a com-
prehensive repository of medical VQA data. All experiments
detailed in this study were executed on a single NVIDIA A100
80GB GPU.

5. Results and Discussion

In order to assess the generalization capacity of our model to
out-of-distribution data, we conducted rigorous evaluations uti-
lizing the test sets of the VQA-RAD and SLAKE datasets. Our
evaluation framework encompassed multiple metrics including
BLEU, METEOR, and Average Normalized Levenshtein
Similarity (ANLS). Two distinct prompts were used during the
test: one presenting the plain question and the other prefacing
the question with ”Answer the question succinctly

and directly, avoiding details or explanations.

Your answers should be straight to the point and

as short as possible”. This dual prompt approach aimed
to guide the model in generating concise responses, thereby
minimizing verbosity and extraneous details.

Table 2 and Table 3 present the performance results obtained
on the VQA-RAD and SLAKE datasets, respectively. An ab-
lation study of the MiniMedGPT training architecture is shown
in Table 1 and illustrated in Figure 4, with loss convergence in
pretraining the SLAKE dataset in Figure 5. Remarkably, while
our model exhibited a trend of underperformance, its relatively
lower number of trainable parameters is an advantage. This
distinction in performance is intriguing, as it suggests a po-
tential scenario of overfitting, wherein the model might have
excessively tailored its responses to the training data, thereby
failing to adequately capture the semantic nuances inherent in
non-medical statements. This phenomenon is reminiscent of
the behavior illustrated in Figure 3, in which MiniMedGPT per-
sistently generates deep and elaborate explanations, even when
explicitly instructed not to do so. In addition, we explore the
efficacy of captioning tools such as MediCap [24] and Gem-
ini Vision Pro [25] as auxiliary components in our evaluation
paradigm. Our observations revealed a variation in the perfor-
mance characteristics of these tools. Gemini Vision Pro, while
adept at providing detailed captions, exhibited a tendency to-
wards inaccuracies, whereas MediCap showcased the converse
behavior, delivering short yet accurate captions. This was re-
flected in the corresponding performance metrics, with Gem-
ini Vision Pro witnessing a decline in performance metrics due
to its inaccuracies, while MediCap demonstrated an improve-
ment, presumably due to its precise and clinically relevant cap-
tions. Additionally, we explored the zero-shot setting by eval-
uating the performance of both the pre-trained MiniGPT-4 and
Gemini Vision Pro. Despite their respective strengths, both at-
tempts yielded unsatisfactory results, particularly notable in the
case of Gemini Vision Pro’s subpar performance on medical
images, highlighting its limited adaptability to domain-specific
contexts. Alternatively, MiniMedGPT demonstrated signifi-
cantly faster training times compared to other benchmark mod-
els. In the VQA-RAD dataset, it completed training in 30 min-
utes, outperforming BERT (47 min) and GPT (36 min). Sim-
ilarly, on the SLAKE dataset, MiniMedGPT required just 35
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minutes, while BERT and GPT took 78 and 60 minutes, re-
spectively. These results highlight the efficiency of the model,
making it especially suitable for clinical environments where
rapid adaptability is essential.

Our model emphasizes training efficiency while maintaining
good performance, though this may come at the cost of re-
duced generalization to out-of-distribution data. To mitigate
overfitting, we applied techniques such as dropout regulariza-
tion, early stopping, and data augmentation, which improved
in-distribution results, but may still leave gaps with unseen
data. In future work, we plan to use more diverse datasets
and explore advanced regularization methods such as adver-
sarial training and weight decay to enhance robustness without
sacrificing speed. Additionally, we aim to find alternatives to
Gemini, given constraints in free settings and processing speed,
and explore ways to handle data limitations through contrastive
learning or in-context learning. As the base models of Min-
iMedGPT are large, we also seek more compact architectures
that can maintain performance while reducing the parameter
count.

6. Conclusion

A novel approach specifically tailored for efficient medical
VQA was introduced. The framework is constructed upon both
medical and generic pretrained LLMs, featuring an end-to-end
versatile fine-tuning pipeline that aligns medical VQA data in
just half a day. To address language generation deficiencies and
dataset imbalances, we utilize Gemini Vision Pro and MediCap
as auxiliary components in our approach. Through extensive
benchmarking and evaluations against six prominent medical
VQA models in two datasets, our approach demonstrates de-
cent performance, characterized by the utilization of the fewest
trainable parameters compared to competing models. We be-
lieve that this work has promising implications for transforma-
tive advances in the medical domain.
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Question: What modality is used to take this image?

Real answer: X-Ray

Generated answer: The modality used to take this image is a plain X-ray of the chest. Answers

What is the diagnosis? [/] This is a bone scan that indicates malignancy in the left humerus,

which means that there is most likely cancer. Are there any complications? [/] Yes, the patient

has pneumonia, which could be related to the malignancy or may have developed independently.

What would be the next step? [/] The next step would be to perform an angiogram and biopsy to

confirm the diagnosis of lung cancer. Conclusion The patient’s findings are consistent with

bone metastasis from lung cancer. Treatment options include surgical resection or radiation

therapy.

Figure 3: Example of noisy output generated by MiniMedGPT during its initial phase on the SLAKE dataset test set.

Figure 4: Ablation study of MiniMedGPT’s training architecture. (a) Base architecture derived from MiniGPT-4 [15] without Middle Projections (MPs), (b)
MiniMedGPT incorporating MPs, (c) addition of trainable parameters for the visual encoder using DoRA [26] as a Low-Rank Adaptation (LoRA) technique, (d)
addition of trainable parameters for the textual decoder using DoRA, and (e) incorporation of trainable parameters for both the visual encoder and textual decoder
using DoRA.
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Table 2: Benchmark Results of Model Performance
using the VQA-RAD Dataset

BLEU Trainable Question Type

Base Method Parameters Open-ended Closed-ended Overall

BERT M2I2 262.2M 4.89% 5.92% 5.53%
MUMC 211.1M 5.24% 6.53% 6.03%

GPT LLaVA-Med w/ BioMed CLIP 7B - - -
LLaVA-Med w/ LLaVA 7B - - -
LLaVA-Med w/ Vicuna 7B - - -
MiniGPT4-v2 (zero-shot) 0 0.80% 0.64% 0.70%
Gemini Vision Pro 0 2.11% 1.95% 2.01%

Ours MiniMedGPT 106M 2.23% 2.98% 2.63%
MiniMedGPT w/ Gemini 106M 2.11% 2.40% 2.23%
MiniMedGPT w/MediCap 106M 4.11% 5.52% 4.60%

METEOR

BERT M2I2 262.2M 12.03% 15.17% 13.54%
MUMC 211.1M 16.22% 18.43% 17.63%

GPT LLaVA-Med w/ BioMed CLIP 7B - - -
LLaVA-Med w/ LLaVA 7B - - -
LLaVA-Med w/ Vicuna 7B - - -
MiniGPT4-v2 (zero-shot) 0 2.12% 3.43% 2.54%
Gemini Vision Pro 0 8.63% 10.19% 9.57%

Ours MiniMedGPT 106M 10.12% 11.43% 10.63%
MiniMedGPT w/ Gemini 106M 8.23% 9.54% 8.76%
MiniMedGPT w/MediCap 36M 13.31% 10.21% 12.31%

ANLS

BERT M2I2 262.2M 12.43% 22.31% 18.04%
MUMC 211.1M 14.43% 27.31% 20.04%

GPT LLaVA-Med w/ BioMed CLIP 7B - - -
LLaVA-Med w/ LLaVA 7B - - -
LLaVA-Med w/ Vicuna 7B - - -
MiniGPT4-v2 (zero-shot) 0 7.43% 13.31% 9.04%
Gemini Vision Pro 0 15.53% 24.96% 19.24%

Ours MiniMedGPT 106M 19.43% 30.31% 20.04%
MiniMedGPT w/ Gemini 106M 11.43% 20.31% 19.04%
MiniMedGPT w/MediCap 106M 17.43% 37.31% 29.04%

Accuracy

BERT M2I2 262.2M 41.04% 54.39% 49.32%
MUMC 211.1M 44.94% 62.87% 56.06%

GPT LLaVA-Med w/ BioMed CLIP† 7B 64.75% 83.09% 75.81%
LLaVA-Med w/ LLaVA† 7B 61.52% 84.19% 75.19%
LLaVA-Med w/ Vicuna† 7B 64.39% 81.98% 75.00%
MiniGPT4-v2 (zero-shot) 0 15.02% 18.32% 16.32%
Gemini Vision Pro 0 20.11% 44.49% 34.81%

Ours MiniMedGPT 106M 25.31% 28.10% 26.42%
MiniMedGPT w/ Gemini 106M 20.76% 21.30% 20.96%
MiniMedGPT w/MediCap 106M 36.31% 62.13% 51.89%

Table 3: Benchmark Results of Model Performance
using the SLAKE English Dataset

BLEU Trainable Question Type

Base Method Parameters Open-ended Closed-ended Overall

BERT M2I2 262.2M 4.34% 9.02% 7.34%
MUMC 211.1M 6.83% 11.43% 8.30%

GPT LLaVA-Med w/ BioMed CLIP 7B - - -
LLaVA-Med w/ LLaVA 7B - - -
LLaVA-Med w/ Vicuna 7B - - -
MiniGPT4-v2 (zero-shot) 0 1.30% 2.12% 1.50%
Gemini Vision Pro 0 1.07% 3.66% 2.08%

Ours MiniMedGPT 106M 2.10% 3.44% 2.93%
MiniMedGPT w/ Gemini 106M 1.93% 3.20% 2.50%
MiniMedGPT w/MediCap 36M 2.12% 4.03% 3.30%

METEOR

BERT M2I2 262.2M 9.2% 10.12% 9.75%
MUMC 211.1M 11.05% 15.31% 10.63%

GPT LLaVA-Med w/ BioMed CLIP 7B - - -
LLaVA-Med w/ LLaVA 7B - - -
LLaVA-Med w/ Vicuna 7B - - -
MiniGPT4-v2 (zero-shot) 0 7.43% 13.31% 9.04%
Gemini Vision Pro 0 6.29% 13.31% 8.76%

Ours MiniMedGPT 106M 7.53% 8.33% 7.88%
MiniMedGPT w/ Gemini 106M 6.53% 6.53% 5.88%
MiniMedGPT w/MediCap 106M 7.89% 9.04% 8.88%

ANLS

BERT M2I2 262.2M 30.12% 32.43% 31.63%
MUMC 211.1M 32.62% 35.43% 34.65%

GPT LLaVA-Med w/ BioMed CLIP 7B - - -
LLaVA-Med w/ LLaVA 7B - - -
LLaVA-Med w/ Vicuna 7B - - -
MiniGPT4-v2 (zero-shot) 0 9.12% 10.43% 9.63%
Gemini Vision Pro 0 10.41% 7.09% 8.41%

Ours MiniMedGPT 106M 22.12% 24.41% 23.60%
MiniMedGPT w/ Gemini 106M 20.06% 24.31% 22.31%
MiniMedGPT w/MediCap 36M 26.42% 30.21% 28.78%

Accuracy

BERT M2I2 262.2M 72.13% 83.31% 79.04%
MUMC 211.1M 82.43% 91.31% 88.12%

GPT LLaVA-Med w/ BioMed CLIP† 7B 87.11% 86.78% 86.98%
LLaVA-Med w/ LLaVA† 7B 83.08% 85.34% 83.97%
LLaVA-Med w/ Vicuna† 7B 84.71% 83.17% 84.11%
MiniGPT4-v2 (zero-shot) 0 38.43% 43.31% 39.04%
Gemini Vision Pro 0 17.05% 47.24% 28.91%

Ours MiniMedGPT 106M 50.43% 53.31% 51.48%
MiniMedGPT w/ Gemini 106M 39.43% 49.31% 43.04%
MiniMedGPT w/MediCap 106M 51.43% 63.91% 55.99%

Figure 5: Comparison of MiniMedGPT’s loss convergence during pretraining
and fine-tuning on the SLAKE dataset.
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