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Abstract Road traffic density has always been a concern

in large cities around the world, and many approaches were

developed to assist in solving congestions related to slow

traffic flow. This work proposes a congestion rate estima-

tion approach that relies on real-time video scenes of road

traffic, and was implemented and evaluated on eight differ-

ent hotspots covering 33 different urban roads. The approach

relies on road scene morphology for estimation of vehicles

average speed along with measuring the overall video scenes

randomness acting as a frame texture analysis indicator. Ex-

perimental results shows the feasibility of the proposed ap-

proach in reliably estimating traffic density and in providing

an early warning to drivers on road conditions, thereby mit-

igating the negative effect of slow traffic flow on their daily

lives.

Keywords road congestion, image texture, local binary

pattern, scene morphology

1 Introduction

Regular and lengthy delays in traffic jams is not only a source

of nuisance and frustration by wasting motorists’ and passen-

gers’ time, but can also be a major cause for economic losses

[1–3]. On the global level, the increase of air pollution and

carbon dioxide by wasted fuel contributes to weather global

warming. Down to the personal level, congestions may have

a negative impact on motorists’ health due to increased stress

and road rage, late arrival which may result in disciplinary

actions, passage obstruction of emergency vehicles, wear and
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tear on vehicle due to accelerating and breaking requiring
more repairs, allocating more time for travelling which could
be otherwise saved for other productive activities. All of these
congestion collateral side-effects can be attributed to road ca-
pacity being below normal, free flow levels.

Traffic congestions could be attributed to many possible
reasons. One of the most recurring circumstances is limited
road capacity, especially at peak hours. Other reasons could
be sudden increase in number of vehicles over a specific
length in a road, accidents causing of blockage to lanes, road-
work that narrow the flow which result in bottlenecks in parts
of the road, and bad weather conditions resulting in partial
or complete roadway obstruction. This gives strong motiva-
tion for developing techniques that could reliably measure the
healthiness state of real-time traffic flow, in analogy to blood
pressure which gives indication of heart and circulatory sys-

tem fitness.
Types of measurement technologies used for detecting

road traffic density are twofold: intrusive and non-intrusive
detectors. The former depends on signals emitted or reflected
from passing vehicles, such as inductive loops, acoustic,
magnetic, radar detection, while an example of the latter is
video imaging detection which is categorised into tripwire
systems that provide count and speed information at a single
spot, and tracking systems relying on spatial information that
can measure true density instead of detectors occupancy [4–

6]. The main focus of this work is to improve video imaging

tracking efficiency, as it has the advantage of providing spa-

tial traffic information that are not related to a single point as

in intrusive detectors.

Examples of recent major prior research related to real-

time traffic analysis from video scenes for the purpose of con-

gestion estimation include traffic conflict evaluation system
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that was developed by Oh et al. [7] which looks for three cat-

egories in video images acquired from a single camera, which

are traffic speed, trajectory, and conflict. In another work [8],

Cheng and Hsu applied a time-varying adaptive system state

transition matrix in Kalman filter for vehicle tracking and

also utilised a regression analysis model for estimating traf-

fic flow. Houben et al. extracted maximum phase congruency

and edges from stereo images and matched together with lo-

cal matching algorithm, then processed by maximum span-

ning tree clustering algorithm to group the points into ve-

hicle objects [9]. Lane traffic characteristics, number of ve-

hicles in each lane, and mandatory lane-changing fractions

in lanes with traffic congestion were employed in this work.

Bishop and Casabona used GPS-enabled networked mobile

phones for collecting and analysing location based data set,

and followed by sample filtering and route machining for

traffic congestion determination [10]. Others like Ozkurt and

Camci used a machine learning approach based on neural

networks for traffic density estimation [11]. Based on max-

imum phase congruency and edges features matching and a

3D tracking, the system detects vehicles and determines their

dimensions. Jain et al. applied a simulation-based analysis on

a simple network topology where a local congestion protocol

that controls the flow of traffic into near-congested regions for

preventing congestion collapse sustaining time variant traffic

bursts [12]. Chen et al. developed a night-time vehicle de-

tection and traffic surveillance system, where vehicles head

and tail-lights are located and processed by a spatial cluster-

ing for analysing the spatial and temporal features of vehicle

light patterns [13]. While Yu and Chen used a simple consec-

utive temporal difference approach for traffic monitoring af-

ter pre-processing with a square neighbourhood algorithm for

compensation of camera disturbances [14]. Also, Marfia and

Roccetti proposed a short-term traffic congestion forecasting

approach that requires no prior. knowledge on road condition,

by estimating the time interval of how long would a conges-

tion last [15]. Another work implements a vehicle counting

method through blob analysis and tracking, and eventually

determining the speed of vehicles [16]. A review on com-

puter vision techniques utilised in traffic scene analysis can

be found in [17].

Since image texture has shown in previous work its use-

fulness in differentiating between different image patterns

[18,19], it could as well assist in representing a better under-

standing of road traffic scenes, if we take into account that the

vehicles distribution are the patterns of interest. Therefore,

and to the best of our knowledge, road traffic density from

a texture perspective has not been classified before into ad-

vanced five stage conditions. It would be very advantageous

from a computer vision system perspective to have a manifold

view of road traffic density that provides road traffic control

authorities with a clearer view on the traffic status quo, and

hence giving time to take appropriate measures to deal with

restricted flow conditions before it reaches to a complete stop.

Also the system needs to be low-cost due to the large number

of hotspots that would be monitored, and with minimal com-

putational complexity to be able to work reliably in real-time.

In this work, a robust model that relies on both morpho-

logical analyses for estimation of average speed on roads

along with video scenes randomness acting as an image tex-

ture measure was developed for measuring actual traffic flow.

First step in the developed model is to pre-process each ac-

quired video frame for non-uniform image intensity adjust-

ment. Secondly, the vehicles are delineated and tracked by

morphologically operating via motion segmentation, then es-

timating regional maxima, followed by connected component

extraction, and this phase terminates by image opening and

vehicle centroid determination. Thirdly, the average entropy

of the local binary pattern (LBP) is used as a supporting mea-

sure for global measurement of the degree of randomness

in the image texture; besides it is known for computational

simplicity and robustness to monotonic grey-scale changes

caused by illumination variation. Finally, the tracked vehi-

cle speed is estimated and a simple multilevel thresholding

classification approach is used for determination of road flow

condition. The steps followed for the proposed model are il-

lustrated in Fig. 1.

Fig. 1 Road traffic density measurement model applied in this work

The paper is organised as follows. The cameras installation

and video acquisitions are explained in Section 2, followed

by the approach proposed for road congestion estimation in

Section 3. The experimental results and associated discussion

are presented in Sections 4 and 5, respectively. Conclusions

are given in Section 6.

2 Materials

In order to ensure consistency and replication of results, the
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camera type, specifications and installation procedure, and

how the traffic videos were captured and made ready for sub-

sequent processing are discussed next.

2.1 Camera specification and calibration parameters

The traffic video scenes were captured using a JVC Everio

GZ-MG360 60 GB Hard Drive camcorder with 35x optical

zoom (800x digital zoom) having a high-performance Kon-

ica Minolta lens. The camera was mounted on a tripod for

stabilisation (i.e., reduction of camera shake) and appropri-

ate elevation (i.e., better field of view) to achieve maximum

sharpness.

At a height of 1.5 meters from the surface of a 5 meters

high bridge, the camera tripod was fixed in the middle on one

of the bridge sides overlooking the monitored road beneath.

The camera was tilted by a 45◦ and focused down on the road

to monitor a distance of 25 meters which is 15 meters away

from the side of the bridge. Figure 2 illustrates the installation

protocol followed in all traffic areas of study.

Fig. 2 Camera installation for traffic video acquisition

Roads at designated study areas were composed of three

lanes in each direction. Each video was further trimmed

equally into two parts, one for incoming and another for the

outgoing vehicles, giving us the opportunity to investigate the

road condition for both directions from the same camera lo-

cation without the need for a second camera.

The cameras were installed at carefully selected locations

deemed as busy intersections in the city of Amman, Jordan.

Monitoring the selected hotspots which are illustrated at the

marked locations on the area study map in Fig. 3, can assist

Fig. 3 Camera locations covering hotspots at major busy intersection in
Amman city, Jordan. Image courtesy of Google maps

in the early diagnosis of traffic flow conditions, and thus can

assist in studying, analysing and taking appropriate measures

to alleviate congestions. The time of video capture corre-

sponding to each hotspot area (A) covering the roads of in-

terests (R) locations which could have multiple branches (a,

b) are given in Table 1. This will facilitate results comparison

in terms of road condition, given that rush hours in Jordanian

cities range from 7:30 to 8:30 in the mornings and from 3:00

to 4:00 in the afternoons; off-peak otherwise.

Table 1 Monitored roadway

Road Capture Road Capture Road Capture

location time location time location time

A1-R1a 16:00 A2-R2a 13:00 A4-R3a 14:00

A1-R2a 16:00 A2-R2b 13:00 A4-R3b 14:00

A1-R2b 16:30 A3-R1a 15:15 A5-R1a 08:00

A1-R1b 16:30 A3-R1b 15:15 A5-R1b 08:00

A1-R3a 15:45 A3-R2a 15:00 A6-R1 12:30

A1-R3b 15:00 A3-R2b 15:00 A7-R1a 08:30

A1-R4a 15:00 A3-R3 14:00 A7-R1b 08:30

A1-R4b 15:45 A4-R1a 13:30 A7-R2a 08:30

A1-R5 15:45 A4-R1b 13:30 A7-R2b 08:30

A2-R1a 11:45 A4-R2a 14:00 A8-R1a 15:30

A2-R1b 11:45 A4-R2b 14:00 A8-R1b 15:30

2.2 Video acquisition and preparation

In order to preserve quality, the acquired video files were ini-

tially processed at full size with a resolution of RGB 720×480

pixels and 29 frames per second (fps), and the recording pro-

cess was for duration of 3 minutes. This will result in a very

large file size that would be deemed computationally inten-

sive. Thus a preprocessing stage would be required to reduce

the video size and frame rate while maintaining acceptable

quality, a process that would have minimal side effect on the

vehicle segmentation.

The captured videos from the fixed camcorder were in the

MOD file extension, a JVC’s implementation of MPEG-2

transport stream, and for the successive video frames to be

appropriately read and processed, they were converted to AVI

format, a common multimedia container used by different

codecs and known for its good video quality and wide ap-

plicability. Xilisoft video converter http://www.xilisoft.com

was used to convert the recorded MOD video files to its cor-

responding AVI format after setting appropriate resolution,

frame rate and aspect ratio.

All acquired videos were converted to grey scale in order

to reduce processing time since we are interested in detecting

any car irrespective of its colour. Then each video frame rate

and size was adjusted from 29 fps, 720×480 pixels having
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a duration of 3 minutes to 15 fps, and 320×240 pixels and

a 1 minute duration, respectively. The converted files had a

size reduction of 80% with unnoticed loss in video quality,

which resulted in a remarkable reduction in the video pro-

cessing operation. Thereby, the videos are ready for the next

step for vehicle detection and road condition analysis. The

preprocessing and analysis program representing this work

was written in MATLAB� Version 7.8 (R2009a) and tested

on a 3 GHz Intel� CoreTM 2 Duo processor notebook with 2

GB RAM memory running Windows� XP 32-bit operating

system.

3 Methodology

This section starts by explaining the applied mathematical

model for computing the average road velocity, then the video

image vehicle detection approach along with the global LBP

image average entropy is described, and eventually the road

condition is classified on a scale of 1 (stopped flow) to 5 (free

flow).

3.1 Representational model

Let � be an order set of acquired video frames vi, where i is a

certain point in the recorded time interval. We can define C to

be the set of univariate vectors c that represents the number

of detected vehicles in �, where C = {c1, c2, c3, . . . }, cm ∈ �.

So the average road velocity VA could be estimated as:

VA =
D
FA
, (1)

where D is a priori known representing a fixed monitored

distance that vehicles cross in meters, and FA as calculated in

Eq. (2), is the average object flow in seconds required for the

vehicles to cross D.

FA =
1
n

n∑

m=1

fr
C(cm)

, (2)

where fr is the frame rate and C corresponds to the total num-

ber n of m detected vehicles c per video frame.

For example in case A1-R1b in Table 1, suppose the mon-

itored part of the lane D was 25 meters long and the video

displayed the frames at a rate of 15 per second for a duration

of 1 minute and the number of detected objects (i.e., vehicles)

was 740. The number of detected vehicles (FA) in the video

can be calculated by substituting in Eq. (2), so the average

velocity (VA) can be easily estimated by substituting in Eq.

(1) which yields 74 km/hr.

Finally the state of the road denoted as congestion rate CR

can be estimated as:

CR = 1 − VA

Vmax
, (3)

where Vmax is the maximum road speed limit of 80 km/hr

when substituting the value of 800 in Eq. (2), which denotes

the number of detected vehicles, for a monitored distance of

25 meters for a duration of 1 minute.

3.2 Object recognition and scene analysis

3.2.1 Image intensity adjustment

The video frames intensity values are adjusted by equalising

the contrast of each image frame prior to the vehicle detec-

tion process. This pre-processing process is deemed neces-

sary when capturing video in outdoors environments where

varying illumination conditions are very common. The traffic

videos should adapt to change in illumination during daylight

and low-light, e.g., early mornings and late afternoons, there-

fore this process could assist in reduction of possible glare

and shadows due to sunlight reflection and other changing

weather conditions and in different seasons, which could af-

fect image con trast, and hence the accuracy of vehicle seg-

mentation.

A homomorphic filtering technique was employed for cor-

rection of the non-uniform illumination in the acquired video

frames as defined in Eq. (4). It operates by assuming the scene

I(x, y) consists from an undesirable change in illumination L

due to varying lighting conditions at the time of video cap-

ture, and the scene reflectance R related to physical properties

of the objects, vehicles in our case. The illumination com-

ponent L is considering as additive noise, and hence can be

filtered-out via a high-pass filter since it tends to have a grad-

ual low-frequency change as compared to the abrupt high-

frequency R component.

The filter can be applied by performing an inverse

Fourier transform to a high-pass filter H(u, v) as h(x, y) =

�−1[H(u, v)] and then convolving the image scene I(x, y) in

the log domain we get the intensity corrected image:

f (x, y) = exp[h(x, y) × ln I(x, y)]. (4)

3.2.2 Morphological processing

• Spatial object motion segmentation

A simple, yet effective approach for detecting changes be-

tween successive video frames f (x, y, t1), f (x, y, t2), . . . ,

f (x, y, tn) is applying the absolute difference between each
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frame and a reference frame R(x, y), where R(x, y) =

f (x, y, tr), and r = 1 denoting a zero state empty road traffic

scene. Assuming that all video frames in the scene are appro-

priately registered and have the same size, spatial resolution

and illumination conditions, and stationary objects would be

eliminated and the moving image components would be pre-

served, described as:

Di j(x, y) =

⎧⎪⎪⎨⎪⎪⎩
1, if |R(x, y) − f (x, y, tk)| > T

0, otherwise,
(5)

where k (k > 1) is the time of video frame capture, and T is

an appreciably different threshold set to the mid grey-level of

the each video frame according to the following function:

T =
1
2

(max( f (x, y, tk)) +min( f (x, y, tk))) . (6)

• Regional maxima

Regional maxima can be defined as a certain connected com-

ponents of pixels with a certain height attribute, such that all

surrounding grey level pixels in the external boundary have

strictly lower values. This could be utilised in removal of

isolated low-valued points in the absolute difference image

Di j(x, y). Isolated small structures are likely to be considered

as noise, thus regarded as an essential procedure for reduc-

tion of false positives in the segmentation process. The elim-

ination of such case can be done by arranging a certain set

of n-connected regions (8 pixels was applied in this work)

in Di j(x, y) and ignoring detected structures that are smaller

in size. Nevertheless, small size and/or slow moving vehicles

might be erroneously eliminated, yet the appropriate selec-

tion of the threshold value T could contribute in mitigating

this drawback, taking into consideration the camera field of

view, depth of field, spatial resolution, focused distance, po-

sition and orientation.

• Connected component extraction

Connectivity is an important concept that defines regions and

boundaries in images. To establish connectivity between two

pixels in an image, they have to be neighbours and their cor-

responding grey levels satisfy a criterion of similarity.

Let Y represent a connect component contained in a set A

and assume that a point of Y is known. Then,

Xk = (Xk−1 ⊕ B) ∩ A, k = 1, 2, . . . , n (7)

yields all the elements of Y, where X0 = p (p is a specific

pixel in the image), B is a suitable structuring element, and ⊕
is the dilation (XOR) operation.

• Image opening

Using a disk-shaped structure element c, which best resem-

bles the shape of a car, with a radius R set empirically to

4 pixels, a morphological opening on the binary image was

performed for noise removal and other non-disk shape struc-

tures in the scene which are considered not related to vehicles

of interest. The opening of each frame fi, i = 1, 2, . . . , by a

structuring element s, denoted fos can be represented as [20]:

f os = ( f � s) ⊕ s, (8)

where � and ⊕ denote erosion and dilation, respectively.

• Image regions properties measurement

The area and centroid properties of each of the remaining ob-

jects in each frame are determined, and the object with the

largest area is the detected vehicle.

Assuming a square S QR, where Q = (q1, q2) and R =

(r1, r2) would enclose each of the detected vehicles or objects

Ws, where s = 1, 2, . . . , k, such that qi � ri, where i = 1, 2,

and the area of the object As could be simply computed as

(r1 − q1) × (r2 − q2). The centroid CRW(cr1, cr2) of As can be

defined as:

cr1 =
1
n

n∑

i=1

Wxi,

cr2 =
1
n

n∑

i=1

Wyi,

(9)

where n is the total number of pixels belonging to object Ws

within area As, Wxi represents the x coordinate of the ith pixel

in As, Wyi represents the y coordinate of the ith pixel in As.

Finally the objects with the largest area would be consid-

ered the detected vehicles

Wdet = argmax(Aseg). (10)

This process when applied to a single video frame is illus-

trated in Fig. 4.

3.3 LBP

LBP is a local image texture descriptor that is robust to il-

lumination variations, where it forms labels to image pixels

by thresholding the neighbouring pixels with the centre value

and converting the result to a binary number. This computa-

tional simplicity gives another advantage in making it suit-

able for real-time analysis.

For a local neighbourhood Nxy of P (where P > 1) number

of pixels gxy in a monochrome image Ixy, a texture T (where

T ∈ Nxy) can be defined as a joint distribution of grey-level

values of gxy [21,22]:

T ≈ t(s(Ix0y0 − Ixcyc ), s(Ix1y1 − Ixcyc), . . . , s(IxP−1yP−1 − Ixcyc)),

(11)
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Fig. 4 Example of vehicle detection and tracking in a video frame of road A1R5. (a) Acquired frame, (b) intensity adjustment, (c) background
removal, (d) morphological processing and object detection, and (e) labeling detected vehicles on original frame for tracking subsequently speed
measurement

where Ixcyc corresponds to the grey value of the centre pixel

of a local neighbourhood, and Ixpyp (p = 0, 1, . . . , P − 1) cor-

respond to the grey values of P equally spaced pixels on a

circle of radius R (R > 0) that form a circularly symmetric

set of neighbours. s(x) is a threshold function that checks for

the sign of the difference according as:

s(x) =

⎧⎪⎪⎨⎪⎪⎩
1, x � 0,

0, otherwise.
(12)

If the coordinates of gc where (xc, yc) the coordinates of

the neighbours gp are given by
(
xc + R cos

(
2πp

P

)
, yc −

R sin

(
2πp

P

) )
.

The spatial structure of the local image texture can be char-

acterised by

LBPP,R =

P−1∑

p=0

s(Ixpyp − Ixcyc) × 2P. (13)

In this work a P and R value of 8 and 1 was applied, respec-

tively.

The average entropy measure eavg can be defined as:

eavg = −
L−1∑

i=0

p(zi) log2 p(zi), (14)

where z is a variable denoting LBP image grey levels and

p(zi), i = 0, 1, . . . , L−1 is the corresponding histogram, where

L is the number of distinct grey levels. An example of a gen-

erated LBP texture image for a road scene is given in Fig.

5. Then the average LBP entropy (eavg) is computed for each

of the texture images and used for supporting the road flow

condition estimation.

3.4 Classification by multilevel thresholding

A simple approach was employed to determine the road flow

RF based upon dividing the congestion rate on a scale 5 level

Fig. 5 A scene in road A1R5 and its corresponding average entropy LBP
image

scale, normalised from 0 to 1, by setting four different thresh-

olds Ts, (s = 0, 1, 2, 3) relevant to the road average veloc-

ity. The threshold describes how much the road capacity is

utilised, where the congestion rate is represented as 1 minus

the detected vehicles divided by the value of 800, which is

the number of detected vehicles equivalent to the maximum

road speed limit of 80 km/hr for a monitored distance of 25

meters for duration of 1 minute, which is indicated as:

Let Ts = [0.1, 0.3, 0.6, 0.8];

if CR < T3 then RF = 5;

else if CR � T3 AND CR < T2 then RF = 4;

else if CR � T2 AND CR < T1 then RF = 3;

else if CR � T1 AND CR < T0 then RF = 2;

else if CR � T0 then RF = 1;

end if. (15)

The feature vectors with the morphological operations are

used to determine the road congestion rate can be summarised

in Algorithm 1.
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Algorithm 1 Congestion rate estimation

for i = 1, 2, . . .,m do % Number of video scenes

C = 0; % Vehicle count initialisation

for j = 1, 2, . . ., n do % Number of video frames

Hq = exp(hxy × ln(Ixy)); % Perform homomorphic filtering

Dxy = |Hq − Ir |; % Absolute difference image

if Dxy > S then Dxy = 1;

else Dxy = 0;

end if

M = Dos % Perform morphological opening

for k = 1, 2, . . ., l do % Number of detected objects

arg max(M(k)) % Find region maxima

end

C = C + M; % Compute number of detected vehicles

FA = f /C; % Estimate average flow, where f is frame
rate

Va = D/FA; % Average speed, where D is monitored
distance

eavg = HLBP × log(HLBP); % Average LBP entropy, HLBP is his-
togram of LBP

CR = 1 − (VA/Vmax)eavg; % Calculate congestion rate using video
frame eavg

Ts = [0.1, 0.3, 0.6, 0.8]; % Set threshold

if CR < T3 then RF = 5; % Free flow

else if CR � T3 AND CR
< T2 then RF = 4;

% Moderate flow

else if CR � T2 AND CR
< T1 then RF = 3;

% Restricted flow

else if CR � T1 AND CR
< T0 then RF = 2;

% Slow flow

else if CR � T0 then RF = 1; % Stopped flow

end if

end for

end for

4 Results

Running the system in eight different areas and for a total of

33 roads, Table 2 shows the classified road conditions after

estimating congestion rates as discussed in the methodology

section. Also the same table indicates the number of detect

vehicles per each road, the detection error which is the per-

centage of error as compared to ground-truth, average road

speed, and the LBP entropy which estimates the average ran-

domness in the captured videos.

In order to make the interpretation of Table 2 easier and

more visually appealing, the city roads traffic conditions were

classified into five colours, as shown in Table 3, which de-

termines the status of the roadway according to the proposed

congestion rate estimation algorithm. The colour code would

give the user a visual indication of the road status depend-

ing on the description of the road condition. The blue, green,

Table 2 Road condition estimation for 8 areas covering 33 different roads

Monitored Detected Detection LBP Estimated Congestion Road

road vehicles error /% entropy speed rate /% condition

/km·hr−1

A1-R1a 423 0.50 3.70 42.3 47 Yellow

A1-R2a 626 0.32 3.98 62.6 22 Green

A1-R2b 710 0.42 3.49 71.0 11 Green

A1-R1b 740 1.10 3.93 74.0 07 Blue

A1-R3a 81 5.19 4.79 08.1 90 Red

A1-R3b 449 0.22 4.12 44.9 44 Yellow

A1-R4a 738 0.00 4.21 73.8 08 Blue

A1-R4b 687 2.23 4.18 68.7 14 Green

A1-R5 774 0.77 3.70 77.4 03 Blue

A2-R1a 214 3.38 4.48 21.4 73 Orange

A2-R1b 392 1.26 3.22 39.2 51 Yellow

A2-R2a 357 0.83 2.88 35.7 55 Yellow

A2-R2b 702 1.81 4.10 70.2 12 Green

A3-R1a 553 2.47 3.68 55.3 31 Yellow

A3-R1b 540 1.10 3.73 54.0 32 Yellow

A3-R2a 53 1.42 4.30 05.3 93 Red

A3-R2b 118 1.72 4.07 11.8 85 Red

A3-R3 227 0.88 3.76 22.7 72 Orange

A4-R1a 433 0.92 3.00 43.3 46 Yellow

A4-R1b 541 1.99 3.17 54.1 32 Yellow

A4-R2a 279 0.36 3.74 27.9 65 Orange

A4-R2b 306 2.00 3.82 30.6 62 Orange

A4-R3a 192 2.67 3.80 19.2 76 Orange

A4-R3b 236 2.48 3.62 23.6 71 Orange

A5-R1a 690 0.00 3.40 69.0 14 Green

A5-R1b 357 3.48 4.03 35.7 55 Yellow

A6-R1 210 0.00 4.31 21.0 74 Orange

A7-R1a 186 1.59 3.29 18.6 77 Orange

A7-R1b 663 2.21 3.76 66.3 17 Green

A7-R2a 597 1.97 3.27 59.7 25 Green

A7-R2b 538 0.00 3.27 53.8 33 Yellow

A8-R1a 735 1.94 4.14 73.5 08 Blue

A8-R1b 360 4.00 3.33 36.0 55 Yellow

Table 3 Road traffic colour code interpretation

Colour code Description Road congestion rate /%

Blue Free flow Less than 10

Green Moderate flow Between 10 and 29

Yellow Restricted flow Between 30 and 59

Orange Slow flow Between 60 and 79

Red Stopped flow Greater than or equal to 80

Black No data Not available (0)

yellow, orange, and red colours refer to the free, moderate,

restricted, slow, and stopped flow conditions, while black

colour code refers to the no-data condition, namely, either

the road is clear where no vehicles are passing for a moni-

toring period of two minutes or a possible malfunction in the

camera, the lens is covered or camera not operating.

The general daytime road conditions in the monitored ar-
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eas are illustrated in Fig. 6, and Table 4 indicates the road

conditions and corresponding peak status. Calculations re-

lated with daytime and rush hours, namely low number of

detected objects in rush hours could mean congestion while

in off-peak hours could mean empty or running road.

Fig. 6 Road flow conditions for 33 roads in eight different busy areas in
Amman city at different times recorded at daytime

Table 4 Peak conditions for monitored roads in Table 2

Colour code Peak cases /%

Free 50.00

Moderate 42.86

Restricted 54.54

Slow 85.71

Stopped 66.67

As a second measure that can assist in improving road con-

dition estimation, the LBP entropy can measure the degree

of randomness in the monitored roads without counting the

number of vehicles in the assigned two minutes period. For

instance, Figure 7 shows how the LBP average entropy can

be used to differentiate between restricted and moderate flow

road conditions for road A1-R1. Also when applied to six dif-

ferent roads in area A1 as illustrated in Fig. 8, it could assist

in distinguishing between stopped, restricted, moderate and

free flow road conditions.

The proposed method was also benched marked against

Fig. 7 Congested LBP entropy A1-R1a (restricted flow ) vs normal LBP
entropy A1-R2a (moderate flow)

Fig. 8 Time series LBP entropy for (from top to bottom) A1-R3a (stopped),
A1-R1a (restricted), A1-R2a (moderate), A1-R2b (moderate), A1-R3b (re-
stricted), and A1-R5 (free), respectively

two other statistical-based texture methods, namely grey-

level co-occurrence matrix (GLCM) and run-length matrix

(RLM), and with non-textural processed video frames for in-

vestigating robustness. The errors for all cases are shown in

the boxplot of Fig. 9.

Fig. 9 Boxplot of vehicle error detection for the proposed LBP method
as compared to two other statistical-based texture method and non-textural
processed video frames

5 Discussion

Road traffic usually exhibit stochastic behaviour due to con-

ditions beyond our control, such as accidents, bad weather,

and urgent road works that could affect the general traffic

flow. Thus this work tends to provide a system that can auto-

matically indicate the severity of road congestion, and hence

improving the road flow by giving drivers an option to use

an alternative way in case if the traffic situation is congested.

As humans tend to be more attentive to colours, and are also

mainly used in traffic lights to indicate road status and control

traffic flow, this work utilises colour codes as well to further

discriminate between different levels of congestion and to fa-
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cilitate road condition’s interpretation compared to numerical

percentages.

It is expected that road conditions towards city centre in

rush hours in early mornings to be moderate to slow flow,

while the roads head out of the city centre to be free flow, and

vice versa for the afternoon rush hours. Examining the bell-

shaped diagram in Fig. 6, most of the road conditions were

restricted having a percentage of 33.33% from the 33 moni-

tored roads. While the slow and average flow conditions had

a nearly similar percentage in the twenties, and 9.00% and

12.00% for the stopped and free flow, respectively. This indi-

cates that most of the roads at the rush hours have a Gaussian

distribution with restricted flow being the average condition,

which is not unusual for that time of the day. Thus this sys-

tem can assist drivers in avoiding stopped flow roads to an

alternative road with a better condition, and hence mitigating

the effect of road traffic congestion in Amman city.

There were a number of odd cases, such as A7-R2a and

A7-R2b were classified as free flow although in peak time,

this is because these roads are heading outside of the city

centre. While road A2-R1a as slow flow although off-peak,

which could be possibly due to road works. Table 4 shows

also that the stopped, slow, and restricted flow conditions oc-

curred mainly in the peak (rush hour) times that match when

visually checking the captured road videos.

According to the proposed algorithm described in the

methodology section, the classified road condition as stopped

had always a high LBP value above 4, indicating a high ran-

domness in the captured video, i.e., the presence of many ve-

hicles in the road scene. However there were other roads that

exhibited entropy values above 4, such as the cases A1-R4a,

A1-R4b, A2-R1a, A2-R2b, A5-R1b, A6-R1, and A8-R1a

when the road congestion condition was not stopped. This in-

dicates that video scene randomness has to be integrated with

the morphological road scene analysis for efficient road flow

estimation. LBP average entropy is considered as a second

measure for checking road conditions that relies on general

image structure, and the more vehicles in the scene the more

chaotic the image becomes and hence would give higher en-

tropy, and vice versa. This can be applied also to distinguish

stopped flow from empty roads, situations as in official hol-

idays, late nights or very early mornings when usually roads

are empty for long periods without cars passing. In both con-

ditions the algorithm running on videos fed by monitoring

camera assess no movements giving a stopped road condition,

whereas the entropy can measure the degree of randomness in

the video scene represented by the number of stationed vehi-

cles superimposed on the empty road scene background. The

edges of the vehicle structures would increase the random-

ness of the road background and hence give an indication of

road occupancy. In other words, a higher entropy value would

be noticed as compared when the road is empty. This is appar-

ent from the comparison results in Fig. 9 where the LBP av-

erage entropy had an improved performance as compared to

other statistical textural methods and to the non-textural pro-

cessed video frames. This implies that the decrease in the ve-

hicles detection error in respect to the other compared meth-

ods had a positive effect on the estimated average road speed,

and hence the accuracy of the estimated congestion rate.

As there is no system free from disadvantages, the sys-

tem currently does not indicate explicitly the reason for the

increase in congestion (i.e., is it due to an accident, road

work, double parking, etc.), and other traffic conditions and

their possible effect on the approach proposed, such as bad

weather, would be investigated in future work. Knowing the

reasons behind congestion would give road traffic control au-

thorities more information on the problem in order to take

fast and suitable measures to deal with this situation. Also the

level of road noise detected by the surveillance cameras mi-

crophones could be employed for improving congestion de-

tection.

6 Conclusions

A new video scene analysis method was introduced for road

traffic congestion estimation. The method combines both

morphological operations for vehicle detection and speed

estimation, and LBP entropy for video scene randomness

measurement. The road traffic congestion is classified onto a

5-level scale that represents the various possible conditions

of road flows. Results show the usefulness of this method

when applied to different road flows at peak and off-peak

times.
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