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Abstract—As the world progresses in technology and health,
awareness of disease by revealing asymptomatic signs improves.
It is important to detect and treat tumors in early stage as it
can be life-threatening. Computer-aided technologies are used
to overcome lingering limitations facing disease diagnosis, while
brain tumor segmentation remains a difficult process, especially
when multi-modality data is involved. This is mainly attributed
to ineffective training due to lack of data and corresponding
labelling. This work investigates the feasibility of employing deep-
fake image generation for effective brain tumor segmentation. To
this end, a Generative Adversarial Network was used for image-
to-image translation for increasing dataset size, followed by image
segmentation using a U-Net-based convolutional neural network
trained with deepfake images. Performance of the proposed ap-
proach is compared with ground truth of four publicly available
datasets. Results show improved performance in terms of image
segmentation quality metrics, and could potentially assist when
training with limited data.

Index Terms—Deepfake, tumor segmentation, cycleGAN, U-
Net, MRI-CT

I. INTRODUCTION

Brain cancer is considered a life-threatening disease that
affects individuals of all ages. According to the World Health
Organization (WHO), in 2020, 308,102 new cases of brain
and central nervous system cancer occurred (in both sexes
and all ages) and 251,329 deaths occurred (also in both sexes
and all ages) [1]. In order to diagnose brain cancer, imaging
techniques such as magnetic resonance imaging (MRI) and
computed tomography (CT) scans are commonly used. These
imaging modalities provide detailed brain structure images for
identifying tumors and monitoring their development.

Over the past decade, there were tremendous efforts devoted
to computer-aided technologies to solve classification and
segmentation tasks in the medical field, particularly improving
efficacy and reliability of accuracy and speed. However, the
growing interest in brain tumor segmentation field is accom-
panied by functional limitations. One of the major limitations
facing researchers is the lack of publicly available datasets that
assist with classification and segmentation tasks in the medical
field. Additionally, deep learning models require long training
time from scratch, which can be a significant drawback,
especially when training multiple models or fine-tuning model
hyperparameters for a new task. This apart from training deep
learning models is considered computationally intensive and

requires powerful GPU-accelerated computing capabilities. As
a result, training machine learning models from scratch can
have negative environmental impacts. Massive computational
power and storage needed for training large deep learning
models entails energy consumption, and hence contributes to
the increase of the carbon footprint.

The reuse of a pre-trained model on a new problem, known
as transfer learning [11], or by creating modified copies of
data as in data augmentation [2], and reducing execution
time as in multi-thread parallel processing [3] can assist with
partially tackling the aforementioned challenges. Although
these techniques reduce the amount of data or time required for
training, they still require to be fed with sufficient data as an
example of the new problem domain, which is unfortunately
scarce in the medical imaging domain. Besides, collecting data
directly from hospitals and clinics is considered tedious, time-
consuming and requires ethical approval. Another approach
would be to artificially generate sufficient deepfake images –
by transfer learning – to properly train the data hungry deep
learning models.

This work, described in Fig.1, aims to investigate the feasi-
bility of deepfake images in deep learning model training for
effective brain tumor segmentation. Findings of this research
will contribute to a better understanding of the potential
usefulness of deepfake images in improving diagnosis, and
eventually the treatment of brain cancer.

II. RELATED WORK

Image segmentation is known as image partitioning into
multiple parts or regions, often based on the pixel charac-
teristics of an image. In this case, brain tumor segmentation is
the process of separating abnormal tissues from normal brain
tissues.

Chang [4] proposed a Fully Convolutional Residual Neural
Network (FCR-NN) based on linear identity mapping, a simple
medical image segmentation method. The FCR-NN combines
optimization gains from residual identity mappings with a fully
convolutional architecture for image segmentation that effi-
ciently accounts for both low- and high-level image features.
The proposed model uses two different networks: the first to
segment the entire tumor, and the other to segment sub-region

6



Fig. 1. The primary procedures involved in this work. The initial step involves
pre-processing the dataset, which is then followed by generating deepfake
images through image translation. These generated images, in combination
with a subset of the original dataset, are utilized to train the U-Net model.
The resulting output of the U-Net is a segmented image, which is subsequently
used for further analysis.

tissues. The proposed model demonstrated improved perfor-
mance with complete tumor, core tumor, and enhancing tumor
validation Dice scores of 0.87, 0.81 and 0.72 respectively.

Zeineldin et al. [5] proposed a modular decoupling frame-
work consisting of two main parts based on an encoding
and decoding relationship, with spatial information extraction
CNN for the encoder part. The semantic map resulting from
the encoder is inserted into the decoder section to obtain a full-
resolution probability map. A modified U-Net architecture was
used with different CNN models, such as ResNet, DenseNet,
and NASNet. The Dice and Hausdorff distance scores of the
obtained segmentation results were 0.81 to 0.84 and 9.80 to
19.70, respectively.

For segmentation tasks, Tripathi et al. [6] proposed an
OKM method. The OKM method is primarily a synthesis of
two fundamental principles, Otsu thresholding and k-means
clustering. The job includes segmenting the tumor and its
components, namely necrosis, edema, and tumor enhancement.
The results of the proposed approach were compared with
the ground truth included in the BraTS dataset. The Dice
coefficient score was 0.91 for 70 image slices. Also, Munir
et al. [7] proposed a 2D-U-Net model based on convolution
neural networks that was trained, validated and tested on the
BraTS2019 brain tumor MRI dataset. Data augmentation was
used to improve performance. An average Dice coefficient of
0.97 was achieved.

In image generation, Shin et al. [8] proposes a context-aware
generative adversarial network (CA-GAN) for synthesizing
medical images, such as MRI and CT scans. The authors
incorporate contextual information into the GAN architecture,
allowing the generator to generate images that are consistent
with the anatomical structure of the target region. The authors
show that their CA-GAN approach outperforms other state-
of-the-art methods on several medical image datasets and can
generate high-quality images with clinically relevant features.
This work is particularly important as it demonstrates the
potential for GAN-based medical image generation to support

clinical applications such as training deep learning models and
developing new diagnostic tools.

Zhou et al. [9] propose a GAN-based approach for unsu-
pervised liver lesion segmentation in CT scans. The authors
train a GAN to generate synthetic CT images with and without
liver lesions and use the discriminator network to distinguish
between real and synthetic images. The authors then use
the generator network to synthesize additional CT images
with liver lesions and use these synthetic images to train a
segmentation model. The authors show that their approach
achieves competitive performance on several benchmark liver
lesion segmentation datasets and can generate high-quality
synthetic images that accurately capture the complex and
variable nature of liver lesions. This work is important as
it demonstrates the potential for GAN-based medical image
generation to support unsupervised learning tasks, which could
be particularly useful in settings where labeled medical images
are scarce.

III. METHODOLOGY

In this section, dataset size will be artificially increased by
generating deepfake images – without the classical data aug-
mentation approach, then the impact of the deepfake images by
evaluating the performance and accuracy of the segmentation
will be demonstrated.

A. Transfer Learning

Transfer learning is a machine learning technique used to
improve the performance of a model trained on a different task
by using a pre-trained model as a starting point and fine-tuning
using a smaller dataset. It is particularly useful in situations
where the amount of labeled data is limited or the target task is
related to the source task [10], [11]. It is a powerful technique
that can be applied to medical image translation tasks [12]. In
this work, it will be utilized in deepfake image generation and
segmentation.

B. Deepfake Image Generation

Medical image translation refers to the process of converting
an image from one domain or modality to another, such as
converting an MRI image to a CT image or vice versa. The
goal of medical image translation is to generate images that are
similar in appearance and information content to the original
images. One of the main advantages of using transfer learning
in medical image translation is that it can significantly reduce
the amount of labeled data required for training [13].

In this paper, faked images are generated using the general
CycleGAN framework [14], [33] and the iphone2dslr_flower
pre-trained model through image-to-image translation [15]
using a generative model such as a GAN [16]. The
iphone2dslr_flower pre-trained model is a generative model
that has been trained on a large dataset of images. Fig.2 shows
some of the flowers that are used in iphone2dslr model.

The model can learn image features and patterns in a par-
ticular domain for generating new ones in a different domain.
The process includes loading the pre-trained model, preparing
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Fig. 2. Sample images in iphone2dslr flower pre-trained model.

the input image, using the pre-trained model to generate
fake images, post-processing, and evaluating the generated
image using metrics, such as mean square error and structural
similarity index measure [17]. It is worth mentioning that the
iphone2dslr_flower model is a conditional generative model
that can generate realistic flower images from a given input
image, it is not directly designed for medical image translation,
but with some adjustments and fine-tuning, it could be used to
generate images that are similar in appearance and information
content to the original brain images.

The cycleGAN is a type of generative adversarial network
(GAN) that is trained to map images from one domain to
another. It is composed of two generators, G and F , and
two discriminators, Dx and Dy . The generators are trained to
transform images from domain X to domain Y and vice versa,
while the discriminators are trained to distinguish between real
images from their respective domains and fake images gener-
ated by the generators. The loss function for the cycleGAN
includes two components: the adversarial loss and the cycle
consistency loss.

C. Medical Image Segmentation

Deep neural networks have shown remarkable results for
various challenging image segmentation and classification
problems. Nonetheless, training deep neural networks is still
difficult because of the limited training data. One of the proven
methods to overcome this problem is to initialize the weights
of a convolutional network that has been pre-trained on a large
dataset, so to improve performance for a specific task such that
a limited number of training data is available [18].

We evaluate in this work the segmentation performance
of a U-Net architecture [19], [20] when trained on real and
deepfake images. The architecture consists of a down-sampling
(i.e. encoding) path, a bottleneck, and an up-sampling (i.e. de-
coding) path as shown in Fig. 3. In the down-sampling process,
convolutional layers are used to increase the number of feature
maps. Max pooling operation is also used to reduce the size of
the feature maps. In the up-sampling process, deconvolutional
layers are used to reduce the number of feature maps and
increase the size of the feature maps. Convolutional layers
are also used to reduce the number of feature maps that are
concatenated from deconvolutional feature maps and feature
maps from the encoding path.

The encoder used in this work, as shown in Fig. 4, is a
densely connected convolutional network [21] that has been
trained on the ImageNet dataset [22]. It is well known that
DenseNet-169 model extracts rich and robust features from
images, and pre-training on ImageNet dataset further improves
its ability to extract relevant features for the segmentation task.

Fig. 3. U-Net convolutional network architecture.

Fig. 4. A pre-trained DenseNet-169 encoder with ImageNet weights.

IV. EXPERIMENTAL RESULTS

Fig. 5 present examples of MR images artificially generated
through the image translation process. The top row of the
figure displays the original images, while the bottom row
shows the translated (i.e. deepfake) images. As can be seen,
the generated images closely resemble the original images in
terms of appearance and information content.

A. Experimental Datasets

This work utilizes four publicly available datasets: Multi-
modal Brain Tumor Segmentation Challenge (BraTS) 2020
dataset [23]–[26]; Unpaired MR-CT Brain Dataset for Unsu-
pervised Image Translation [28]; Barin T1-weighted CE-MRI
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Fig. 5. MR image generation: [Top row] real and [bottom row] generated
’deepfake’ MR images.

images [29], and the IXI dataset [30] to train and evaluate
architecture performance.

The aspects of the used experimental datasets are as follows:
• The BraTS 2020 Challenge dataset [23]–[27] contains

369 training and 125 validation multimodal brain mag-
netic resonance studies. Each study includes four MR
sequences with same size of 240 × 240 × 155: T1-
weighted (T1), post-contrast T1-weighted (T1ce), T2-
weighted (T2), and fluid-attenuated inversion recovery
(Flair). For each study, experts annotated the enhancing
tumor (ET), peritumoral edema (ED), and necrotic and
non-enhancing tumor core (NCR/NET) on a voxel-by-
voxel basis. In this work T1-weighted (T1) MR images
were used.

• The Unpaired MR-CT Brain Dataset [28] contains un-
paired 2D MR and CT image slices from 20 patients. The
dataset includes a total of 179 with size of 256×256 2D
axial image slices for 20 patient volumes (90 MR and 89
CT 2D axial image slices).

• The Brain T1-weighted CE-MRI images dataset [29]
contains 3064 T1-weighted contrast-enhanced images of
233 patients with three types of brain tumor: meningioma
(708 slices), glioma (1426 slices), and pituitary tumor
(930 slices). All MR images are 2D axial and 512× 512
in size.

• The IXI dataset [30] contains nearly 600 MR images
of normal healthy subjects collected in three different
hospitals in London. Various sequences such as T1, T2,
proton density-weighted (PD), magnetic resonance an-
giography (MRA), and diffusion-weighted (DTI) images
are provided.

During the pre-processing phase, the images are resized to
256 × 256 and normalized between 0 and 1. The number of
images used from each dataset in this work are included in
Table I. The total number of images obtained and combined
from the first four datasets is 5290 images and then are split
into training and validation sets in an 80%-20% ratio.

The network was trained before (total of 5290 images)
and after the inclusion of deepfake images (total of 5464
images). Training was set to 25 epochs, a batch size of 32,
Dice loss as a loss function [31], and Adam optimizer [32]
with a learning rate of 0.0001 used in each training. The

TABLE I
TOTAL NUMBER OF IMAGES FOR MODEL TRAINING

Dataset Name Extracted Images
BraTS 2020 1529

Unpaired MR-CT 270
Brain tumor 491

IXI 3000
Deepfake images 174

training was performed using local Jupyter Notebook, Python
3.9, and NVIDIA GeForce RTX 2060 SUPER GPU with 8
GB of memory. Fig. 6 illustrates the input and output of using
DenseNet169-UNet for brain tumor segmentation.

Fig. 6. Segmentation based on enhancing training with MR deepfake images:
[Top row] sample MR images and [bottom row] segmented tumor regions.
Note last image is normal, therefore no segmentation output is shown.

In order to evaluate network performance, overlap-based
and surface-based metrics were used. To evaluate the similar-
ity/overlap between the ground truth and the predicted mask,
the Dice similarity coefficient (DSC) and Jaccard similarity
coefficient (JSC) metrics were utilized. The main difference
between the DSC and JSC is how they penalize false positives
and false negatives. False negatives are typically given greater
weight by the DSC, but false positives are typically given more
weight by the JSC.

The mean absolute distance (MAD) and Hausdorff distance
(HD) metrics were used to evaluate the distance/error between
two points in a metric space. The primary difference between
MAD and HD is the distance measurement. MAD is the
average distance between the two sets, whereas HD is the
maximum distance between any point in one set and the
nearest point in the other set. Therefore, both metrics were
used to provide a more comprehensive evaluation of the
segmentation performance.

The validation results of training the model with and without
deepfake images are shown in Table II.

V. DISCUSSION AND CONCLUSION

The network performance improved after using deefake
images, as observed in Table II. Both Figs 7 and 8 visually
illustrate the network performance before and after enhancing
training with deepfake images.
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TABLE II
VALIDATION RESULTS OF TRAINING WITHOUT (T ) AND WITH (TDF )

DEEPFAKE IMAGES

DSC JSC MAD HD
T 0.53 ± 0.28 0.41 ± 0.26 0.084 ± 0.088 0.27 ± 0.08

TDF 0.59 ± 0.26 0.46 ± 0.25 0.061 ± 0.056 0.25± 0.05

The columns from left to right in Fig. 7 represent the ground
truth MR image, corresponding lesion mask, segmented lesion
area without deepfake images, overlapping between the lesion
mask and segmented area on MR images without deepfake
training, respectively. In Fig. 8 represents the ground truth
MR image, corresponding lesion mask, segmented lesion area
with deepfake images, overlapping between the lesion mask
and segmented area on MR images with deepfake training,
respectively.

To validate the performance of the network accurately, the
same MR images are used in both Figs. 7 and 8. There are
fewer false positives regions in Fig. 8, which shows that after
employing the deep-fake images, the network’s performance
improved and its ability to predict correct lesions increased.

Fig. 7. Results obtained without enhancing training with deepfake images.
[left-right] Ground truth MR image, corresponding lesion mask, segmented
lesion area, overlapping between lesion mask and segmented area on MR
images, respectively (gray color represents true positive, green color for false
negative, and red color shows false positive.

Various medical tasks such as classification and segmen-
tation require a vast number of images to be used in order
to provide reliable results. In this work, the use of deepfake
images to segment brain tumors improved the performance of
the model compared to real images. These results suggest that
deepfake images provide robust and stable performance and

Fig. 8. Enhancing training with deepfake images. [left-right] the ground truth
MR image, corresponding lesion mask, segmented lesion area, overlapping
between the lesion mask and segmented area on MR images, respectively
(gray color represents true positive, green color for false negative, and red
color shows false positive.

improve model generalization.
This research has highlighted training with deepfake images

as a promising approach, and holds potential as a valuable
technique in enhancing medical image segmentation. However,
it should be noted that there could be limitations, as deepfake
data needs prior registration between image pairs, and perfor-
mance was not investigated in case of small lesions or noise
presence [34], [35]. Future work may include expanding the
dataset size and investigate deepkafe image robustness under
noisy conditions. Furthermore, further research can be done
to validate the efficacy of this approach through large-scale
clinical trials. To conclude, while this work demonstrates the
good side of deepfake images in improving image segmenta-
tion, further clinical validation is required to fully realize its
potential in real practice.
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