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CHAPTER 5:  IMAGE RESTORATION

 The ultimate goal is to improve an image in some 
predefined sense.

 Restoration

 The given image is degraded.

 Degradation is modeled.

 Inverse process is applied.

 No focus on sensor, digitizer, and display degradations.

 Some restoration techniques are best formulated in the 
spatial domain while others are better suited for the 
frequency domain.

 Spatial domain:  additive noise.

 Frequency domain: blurring  
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A MODEL OF IMAGE DEGRADATION/RESTORATION 
PROCESS
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NOISE MODELS

 Principle sources of noise in digital images arise during 
acquisition and transmission. 

 Acquisition:  performance of image sensors is affected by a 
variety of factors (environmental conditions, etc.) and by the 
quality of the sensing elements.

 Transmission:  images are corrupted due to interference in 
the channel.

 Spatial properties of noise

 Frequency properties of noise

 White noise:  Fourier spectrum of noise is constant. 

 Assumption:  noise is independent of spatial 
coordinates.

 Partially invalid.

 No correlation between pixel values and noise.

 Exception:  spatially periodic noise.
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NOISE PROBABILITY DENSITY FUNCTIONS

We are concerned with the 
statistical behavior of the gray-level 
values of the noise component of 
the model.

These values may be considered 
random variables characterized by a 
probability density function (PDF).

Most common PDFs:

1. Gaussian (normal) noise
2. Rayleigh noise
3. Erlang (Gamma) noise
4. Exponential noise
5. Uniform noise
6. Impulse (salt-and-pepper) noise
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MODELING A BROAD RANGE OF NOISE 
CORRUPTIONS

 The 6 PDFs are useful tools.

 Gaussian noise arises in an image due to factors such 
as electronic circuit noise and sensor noise due to poor 
illumination and/or high temperature.

 Rayleigh density is helpful in characterizing noise 
phenomena in range imaging.

 Gamma and exponential densities find application in 
laser imaging.

 Impulse noise if found in situations where quick 
transients, such as faulty switching, take place during 
imaging.

 Uniform density may be the least descriptive of practical 
situations but it is quite useful as the basis for numerous 
random number generators.
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A TEST PATTERN

composed of simple, constant areas
that span the gray scale from black
to near white in 3 increments.
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NOISY IMAGES AND THEIR HISTOGRAMS –
GAUSSIAN, RAYLEIGH, AND GAMMA

The parameters of 
the noise were 
chosen in each 
case so that the 
histogram 
corresponding 
to the 3 gray levels 
in the test pattern 
would start to 
merge. 
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NOISY IMAGES AND THEIR HISTOGRAMS –
EXPONENTIAL, UNIFORM, AND IMPULSE

The parameters of 
the noise were 
chosen in each 
case so that the 
histogram 
corresponding 
to the 3 gray levels 
in the test pattern 
would start to 
merge. 

Extra peak:  the 
noise components 
were pure black 
and white, and the 
lightest 
component of the 
test pattern is 
light gray. 
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PERIODIC NOISE

Periodic noise arises 
typically from electrical or 
electromechanical 
interference during 
acquisition.

This is the only spatially 
dependent noise 
considered here.

Image is severely corrupted by 
spatial sinusoidal noise of 
various frequencies.

The Fourier Transform of a pure 
sinusoid is a pair of conjugate 
impulses located at the 
conjugate frequencies of the 
sine wave.

If the amplitude of a sine wave 
in the spatial domain is strong 
enough, we would see in the 
spectrum of the image a pair of 
impulses for each sine wave in 
the image.  
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ESTIMATION OF NOISE PARAMETERS

 Periodic noise

 Inspection of the Fourier spectrum

 Inspection of the image (possible only in simple cases)

 Automated analysis

 Noise spikes are exceptionally pronounced.

 Some knowledge is available about the general location of the 
frequency components.

 Noisy PDFs

 Parameters may be partially known from sensor specs

 Imaging system available

 Capture a set of images of flat environments.

 Images are available

 Crop small patches of reasonably constant gray level.

 Obtain the histogram.

 Compute mean and variance.

 Gaussian PDF:  Completely determined by the mean and variance.

 Impulse noise:  actual probability of occurrence of white and black 
pixels is needed.

 Others: Use the mean and variance to solve for a and b.
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SPATIAL DOMAIN FILTERING FOR ADDITIVE NOISE
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Mean filters

Arithmetic mean filter
Geometric mean filter
Harmonic mean filter
Contraharmonic mean filter

Order-statistics filters

Median filter
Max & min filters
Midpoint filter
Alpha-trimmed mean filter

Adaptive filters

Adaptive local noise reduction filter
Adaptive median filter
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MEAN FILTERS
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Arithmetic mean

Geometric mean
(comparable to arithmetic 
mean but tends to lose less 
image detail)

Harmonic mean
(works well for salt noise but 
fails for pepper noise.  OK for 
other types of noise as well)

Contraharmonic mean
(+Q:  eliminates pepper noise
-Q:  eliminates salt noise
not simultaneously!)

Q=0   arithmetic mean

Q=-1  harmonic mean

Order 
of the filter
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ARITHMETIC AND GEOMETRIC MEAN FILTERS

Geometric mean filter did 
not blur the image as 
much as the arithmetic 
mean filter

mean=0, variance=400
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SPATIAL FILTERING FOR ADDITIVE NOISE

pepper noise salt noise

Better job of 
cleaning the 
background at the 
expense of blurring 
the dark areas!
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CONTRAHARMONIC FILTERING 
WITH THE WRONG SIGN

Wrong sign for Q Wrong sign for Q
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ORDER-STATISTICS FILTERS
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Median filter

Max filter

Min filter

Mid-point filter

Alpha-trimmed filter

Effective for 
bipolar and 
unipolar impulse 
noise 

Useful for finding 
the brightest 
points in an image

Useful for finding 
the darkest points 
in an image

Works best for 
randomly 
distributed noise

d = 0  arithmetic
d = (mn-1)/2  median
Other d:  Useful for 
multiple types of noise 
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3 PASSES OF MEDIAN FILTER FOR IMPULSE NOISE

1ST pass

3rd pass2nd pass

Significant 
Improvement!

barely visible 
noise points!

# of passes 
should be as 
low as 
possible!
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MAX & MIN FILTERS FOR PEPPER NOISE

Pepper noise is 
reasonably removed.

The filter also removed 
some dark points from 
the borders of the dark 
objects.

Better job!

The filter also removed 
some white points from 
the borders of the light 
objects.
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REDUCTION OF NOISE WITH 4 TYPES OF FILTERS

Uniform noise
(mean=0, 
variance=800)

Additional salt-and-
pepper noise 
(Pa=Pb=0.1)

Arithmetic mean
(no good)

Geometric mean
(no good)

Median
(much better)

Alpha-trimmed mean
(better than median)
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ADAPTIVE FILTERS

 The filters discussed so far are applied to an image 
independent of how image characteristics vary from one 
point to another.

 2 simple adaptive filters

 Adaptive, local noise reduction filter

 Adaptive median filter

 Their behavior changes based on statistics of the image 
inside the filter region.

 Advantage:  superior performance

 Disadvantage:  increase in filter complexity
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ADAPTIVE, LOCAL NOISE REDUCTION FILTER

Local region Sxy

g(x,y):        value of noisy image at (x,y)



2: variance of the noise 
mL: local mean of pixels in Sxy

L
2: local variance of pixels in Sxy

Behavior of the filter:

1. 


2 = 0  g(x,y) – trivial case with zero noise

2. L
2 >> 



2


~g(x,y) – edges should be preserved

3. L
2
 



2
 mL – local noise is reduced by averaging 
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Analysis of 
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2:

Needs to be known or estimated (but we seldom have exact knowledge).
Tacit assumption:  L

2
 



2 (because Sxy  g(x,y))
L

2 < 


2 
 set ratio=1 (this makes the filter nonlinear but prevents meaningless results)

L
2 < 



2
 allow negative values and rescale (results in loss of dynamic range in the image)
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COMPARISON OF ADAPTIVE FILTER WITH 
ARITHMETIC AND GEOMETRIC MEAN FILTERS

Best results:

Noise reduction is 
comparable but the 
restored image is 
much sharper!
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ADAPTIVE MEDIAN FILTER

Zmin = min gray level value in Sxy

zmax = max gray level value in Sxy

zmed = median of gray levels in Sxy

zxy = gray level at (x,y)
Smax = max allowed size of Sxy

The filter works in 2 levels:

Level A

A1 = zmed – zmin

A2 = zmed – zmax

If A1 > 0 and A2 < 0, goto level B
Else increase the window size
If window size  Smax, repeat level A
Else output zxy

Level B

B1 = zxy – zmin

B2 = zxy – zmax

If B1 > 0 and B2 < 0, output zxy

Else output zmed

3 main purposes:

1. To remove impulsive noise
2. To provide smoothing of other noise
3. To reduce distortion (e.g., excessive 

thinning or thickening of object 
boundaries)
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A SIMPLE EXAMPLE ADAPTIVE MEDIAN FILTER

10 20 20

20 15 20

20 25 100

zmin = 10

zmax = 100

zmed = 20

A1 = 20-10 = 10
A2 = 20-100 = -80
A1 > 0 & A2 < 0:  zmin < zmed < zmax Hence, zmed cannot be an impulse.
Go to level B

B1 = 15-10 = 5
B2 = 15-100 = -85
B1 > 0 & B2 < 0:  zmin < zxy < zmax Hence, zxy cannot be an impulse.

Output zxy = 15            these intermediate-level points are not changed 

(B1 > 0 & B2 < 0) is false:  zxy = zmin or zxy = zmax

Output zmed = 20

center
point
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COMPARISON OF MEDIAN AND ADAPTIVE MEAN 
FILTERS

Median filter Adaptive median filter

Noise reduction is 
comparable but the filter 
preserved sharpness!
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FREQUENCY DOMAIN FILTERING FOR PERIODIC  
NOISE

 Bandreject filters:  remove or attenuate a band of 
frequencies about the origin of the Fourier Transform.

 Bandpass filters:  pass or strengthen a band of 
frequencies about the origin of the Fourier Transform .

 Notch filters:  reject or pass frequencies in predefined 
neighborhoods about a center frequency.
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BANDREJECT FILTERS
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A principal application:  noise removal in situations where the general location of the noise 
components in the frequency domain is approximately known.
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APPLICATION OF A BANDREJECT FILTER

Restoration 
is evident!

Note that it would not be possible to get equivalent results by 
spatial domain filtering using small convolution masks!
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BANDPASS FILTERS

Performs the 
opposite operation 
of a bandreject 
filter.

),(1),( vuHvuH brbp 

Performing straight bandpass filtering on an image is not a common 
procedure because it generally removes too much image detail.

Bandpass filtering is quite useful in isolating the effect on an image of 
selected frequency bands.
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APPLICATION OF A BANDPASS FILTER

Generated by: 

• using the bandpass filter corresponding to 
the bandreject filter in the previous 
example

• taking the inverse transform

Most image detail is lost 
but the remaining 
information is very useful
as it shows a noise 
pattern that is close to 
that of the noise that 
corrupted the image! 



32

NOTCH FILTERS

 Notch filters must appear in symmetric pairs about the 
origin in order to obtain meaningful results.

 The notch filter located at the origin is an exception.

 The # of pairs of notch filters is arbitrary.

 The shape of the notch areas is also arbitrary.

 Two classes

 Notch reject filters

 Notch pass filters

 Notch reject filters

 Ideal notch reject filters

 Butterworth notch reject filters

 Gaussian notch reject filters

 Notch pass filters

 Ideal notch pass filters

 Butterworth notch pass filters

 Gaussian notch pass filters
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NOTCH REJECT FILTERS
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Note that these 
3 filters become 
highpass filters 
if u0=v0=0.



34

NOTCH PASS FILTERS
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Performs the 
opposite operation 
of a notch reject 
filter.

Note that the 3 filters become lowpass filters if u0 = v0 = 0.
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APPLICATION OF A NOTCH PASS FILTER

Notch filtering can do a 
better job to reduce the 
scan lines without 
introducing undesirable 
blurriness.

We start with a simple 
ideal notch pass filter 
(superimposed on the 
spectrum) to get an idea 
about the noise 
contribution.

Spectrum of 
the input 
image

Inverse 
transform of 
notch-pass 
filtered result

Now that we have a 
suitable notch pass 
filter, it can be used to 
obtain the 
corresponding notch 
reject filter.  Hence, the 
filtered image!
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LINEAR, POSITION-INVARIANT DEGRADATIONS

 Linear, position-invariant techniques  

 Many types of degradations can be approximated by linear, 
position-invariant processes.

 Tools of linear system theory become available.

 Nonlinear, position-dependent techniques

 More general and usually more accurate

 Very difficult to solve or no known solutions

 Before restoration:  g(x,y) = H[f(x,y)] + (x,y)

 Position-invariant operator

 H[f(x-, y-)] = g(x-, y-), for any f(x,y), and any  & .

 The response at any point in the image depends only on the value 
of the input at that point, not on its position.

 Impulse response of H:   H[(x-, y-)] = h(x,,y,)

 If the impulse response of a linear system is known, we can 
compute the response to any input f!

 g(x,y) = h(x,y)*f(x,y)+ (x,y) or G(u,v) = H(u,v)F(u,v)+ N(u,v) 

 (x,y):  random values, independent of position.
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DEGRADATION FUNCTION ESTIMATION

 Degradations are modeled as being the result of convolution.

 Restoration seeks to find filters that apply the process in 
reverse.

 Linear image restoration:  image deconvolution

 Restoration filters:  deconvolution filters

 3 principal ways to estimate the degradation function

 Observation

 Experimentation

 Mathematical modeling

 Image restoration using a degradation function

 Blind deconvolution

 The true degradation function is seldom known completely.
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ESTIMATION BY IMAGE OBSERVATION

 Suppose we are given a degraded image without any 
knowledge about the degradation function H.

 One way to estimate the function is to gather information 
from the image itself.

 Estimation of the degradation function in a blurred image

 Look for areas of strong signal content (to reduce the effect 
of noise).

 Choose a small section of the image with simple structures 
(e.g., part of an object and the background).

 Construct an unblurred image of the same size and 
characteristics of the observed subimage.

:  observed subimage

:  constructed subimage

 Suppose a plot of                looks like a Butterworth filter.

 Construct a function               on a larger scale but with the 
same shape. 
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ESTIMATION BY EXPERIMENTATION

 If equipment similar to the equipment used to acquire the 
degraded image, it is possible to obtain an accurate 
estimation of the degradation.

 Estimation of the degradation function

 Use various system settings until the image is degraded as 
closely as possible to the image we want to restore.

 Obtain the impulse response of the degradation by imaging 
an impulse.

 H(u,v) = G(u,v)/A
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ESTIMATION BY MODELING

 Provides insight into the restoration problem.

 In some cases, models take into account environmental 
conditions.

6/522 )(),( vukevuH 

k = 0.0025

k = 0.00025k = 0.001

A degradation model 

based on the 
physical 
characteristics of 
atmospheric 
turbulence.

Sometimes, Gaussian 
LPF is used to model 
mild, uniform 
blurring.
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AN EXAMPLE OF MODELING 
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Model derived from an image 
that has been blurred by 
uniform linear motion between 
the image and the sensor.
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INVERSE FILTERING

 Direct inverse filtering:  The simplest approach to restoration.

 The following derivation shows that we cannot recover the 
undegraded image exactly because N(u,v) is a random 
function whose Fourier Transform is not known!

 More bad news:  If the degradation has zero or very small 
values, the ratio N(u,v)/H(u,v) may dominate the estimate.

 To circumvent the problem, we can limit the filter frequencies to 
values near the origin.

 H(0,0) = Mean of h(x,y):  usually the highest value of H(u,v). 
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AN EXAMPLE OF INVERSE FILTERING

0.0025with 
 

k
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Degradation function:

The cutoff was implemented 
by applying a Butterworth 
lowpass function of order 10.
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MINIMUM MEAN SQUARE ERROR (WIENER) 
FILTERING

 Inverse filtering makes no explicit provision for handling 
noise.

 Now we consider both images and noise as random 
processes.

 The objective:  Find an estimate    of the uncorrupted image 
such that the mean squared error between them is minimized.

 Assumptions

 The image and the noise are uncorrelated.

 The image or the noise has zero mean.

 The gray levels in the estimate are a linear function of the levels 
in the degraded image.

 The restored image is given by the inverse Fourier transform 
of            .

 Noise = zero Wiener filter = inverse filter!
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DERIVATION OF THE WIENER FILTER
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AN EXAMPLE OF WIENER FILTERING

Degraded input image

Previous results for comparison

K was chosen 
interactively to yield 
the best possible visual 
results.
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AN EXAMPLE OF WIENER FILTERING

Blurred image with 
additive Gaussian 
noise (mean=0, 
variance=650) 

Noise variance is 
reduced by one 
order of magnitude

Noise variance is 
reduced by five 
orders of magnitude
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Wiener filter with

where k = 0.0025.

K was chosen interactively.


