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CHAPTER 4: IMAGE ENHANCEMENT IN THE
FREQUENCY DOMAIN

French mathematician J. B. J. Fourier was born in 1768.
He died of heart disease at the age of 59.

Fourier Series: Any periodic function can be expressed
as the sum of complex exponentials (sines and/or
cosines) of different frequencies, each multiplied by a
different coefficient.

0 f(x): single variable, continuous function with period T

f(x)= chejQka,QO =2n /T,
k=—0

Fourier Transform: Non-periodic functions can also be
represented in terms of complex exponentials.

0 f(x): single variable, continuous function.

Fuy=[" fxe”™dx  [(x)= [ Faye’™ du

J

|
Fourier transform pair




FOURIER SERIES

FIGURE 4.1 The function at the bottom is the sum of the four functions above it.
Fourier’s idea in 1807 that periodic functions could be represented as a weighted sum
of sines and cosines was met with skepticism.




FOURIER TRANSFORM IN 2 VARIABLES I

Fourier Transform can easily be extended to 2 variables:

F(u,v)= f I_OO £ (x,)e” ) dxdy

f(x,y)= Ji fw F(u,v)e’ > ") dydy




ONE-DIMENSIONAL DFT AND ITS INVERSE I

f(x), X = 0,1,2,...,M —1: discrete function of one variable

1 M-1 '
F(u)= ﬁZf(x)e_ﬂm/M,u =0,1,.,M -1
x=0

*

Approximately M?> summations and multiplications to compute

M1
f(x)=D Fu)e”™ ™ x=0,,..,M -1
u=0

The DFT and its inverse always exist.




FREQUENCY DOMAIN & FREQUENCY
COMPONENTS

e’’ =cosO + jsinO
cos(—0) = cosO

M-1
= F(u)= iZf(x)[cosZnux/M—jsin 2mux/ M, u=0,12,...,M —1.

x=0

The domain over which the values of F(u) range is called the frequency domain.

Each of the M terms of F(u) is called a frequency component of the transform.

u & F(u): frequency domain & frequency components.

x and f(x): time domain and time components.

A useful analogy: Compare Fourier transform to a glass prism.

= Glass prism: a physical device that separates light into its various color components.

= Fourier transform: a mathematical prism that separates a function into various
components based on frequency content.




FOURIER TRANSFORM IN POLAR COORDINATES I

F(u) = F(u)] e,

where | (1) |= [R2 () + I ()] ana $(u1) = tan{ I(u) }
4 4 R(u)

magnitude phase angle

Pu) =| Fu)["= R*(w) + 1" (u)

f

power spectrum
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A ONE-DIMENSIONAL EXAMPLE

It is common practice to multiply f(x)

% B ;I 024 by (-1)* before taking the transform.
K=38
f(x) |F(u)| ab
AK cd
. ™ FIGURE 4.2 (a) A
Important things to note: . discrete function
4 | K points of M points, and
. (b) its Fourier
The height of the et (o)
discrete function
spectrum doubled as ' P _ wu with twice the
the area under the M points i f M points i number of
. . nonzero points,
curve in the x-domain i snd () ife Fouris
doubled. 2_/45_\ spectrum.
M
2. The # of zeros in the
spectrum in the same
interval doubled as ()
the length of the
function doubled.
2K points
A
M=1024
A = 1 M points B [ M points EE

K=16




SAMPLES IN SPATIAL AND FREQUENCY DOMAINS I

f(x),x=0,1,..,M —1: Msamples

f(xo): first point in the sequence

f(x, + Ax), f(x, + kAx),..., f(x, +[M —1]Ax)
J(x) = f(x, +xAx)

Fu),u=0,,...M —1: msamples
0 : first point in the sequence

FO+Au), F(0+ kAu),..., F(0+[M —1]Au)
F(u)=F(uAu)

—

— Au=——




TWO DIMENSIONAL DFT AND ITS INVERSE I

1 M=l N .
F(u,v)=—— f(x,y)e 2/ MowiN 4 01,2, .M -1,v=012,...,N—1.
MN x=0 y=0 1 . J
frequency variables
M-1 N-1 .
f(x,y) = F(u,v)e’? M v —0,1,2...M -1,y =0,1,2,...N —1.
u=0 v=0 | ]

spatial variables

Polar coordinates: | F(u,v) |=[R*(u,v) + 1> (u,)]"*  ¢(u,v) = tan{ I(u,v) }
R(u,v)

Power spectrum:  P(u,v) =| F(u,v)|*= R’ (u,v) +I1*(u,v)
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SHIFTING OF ORIGIN I

I, D] =Fu—-M/2,v—N/2)
) )

Fourier This shifts the origin
Transform of F(u,v) to (MI2,N/2).

] M1 Nl If f(x,y) is an image, the value of DFT at
F(0,0)=—— f(x,y) @ theorigin is equal to the average gray
MN ‘= =0 level of the image.

A

dc component

f(x,y) is real: F(u,v):F*(—u,—v) * | F(u,v)|= F(—u,—v)|

A

and Av=—- Spectrum is symmetric

MAy

Au =

11



CENTERING THE SPECTRUM

ab

FIGURE 4.3

(a) Image of a
20 X 40 white
rectangle on a
black background
of size 512 X 512
pixels.

(b) Centered
Fourier spectrum
shown after
application

of the log
transformation
given in

Eq. (3.2-2).
Compare with
Fig.4.2.

Image was multiplied by (-1)**”
prior to computing the transform.
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Frequency is directly related to the rate of change.

RELATIONSHIP BETWEEN THE DFT COMPONENTS
AND SPATIAL CHARACTERISTICS OF AN IMAGE

DFT components can be associated with patterns of intensity variations in an image.

2 principal features:

1. Strong edges that
run approx. at
+45°,

2. 2 white oxide
protrusions.

Correspond to the
strong edges.

a
b

FIGURE 4.4

(a) SEM image of
a damaged
integrated circuit.
(b) Fourier
spectrum of (a).
(Original image
courtesy of Dr. 1.
M. Hudak,
Brockhouse
Institute for
Materials
Research,
McMaster
University.
Hamilton,
Ontario, Canada.)

Corresponds to the
short protrusion.

Corresponds to the
long protrusion.
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(1)

Cropping to even dimensions
Gray-level scaling

Conversion to floating point on input
Conversion to 8-bit format on output
Etc.

Each component of H multiplies
both real and imaginary parts of
the corresponding component of F.

BASIC STEPS IN FREQUENCY DOMAIN FILTERING

Such filters are called zero-phase-shift filters.

Frequency domain*lloring operation

Fourier
transform

Inverse
Fourier
transform

Filter
function
‘ H(u,v) ‘

:
T

flx.y)
Input
image

F(u.v) H(u,v)F(u,v)

b

Complex Complex ‘
g(x.y)

Enhanced
image

Real filter

FIGURE 4.5 Basic steps for filtering in the frequency domain.

SahwWN =

Multiply the input image by (-1)**Y
Compute F(u,v)

Multiply F(u,v) by a filter function H(u,v)
Compute the inverse DFT

Obtain the real part

Multiply the real part by (-1)**Y

Imaginary components
set to zero.

4
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AN INTRODUCTORY EXAMPLE OF FILTERING

Assume we want the average value of an image to be zero.
Also assume the transform has been centered.

« F(0,00=0

H( ) { 0 if (u,v) = (M/2, NI2)
] uyv)=
* 1 otherwise

notch filter: constant function with a notch at the origin

FIGURE 4.6 .
Result of filtering In reality, the average
the image in of the displayed image
Fig. 4.4(a) with a tb

notch filter that cannot be zero.

set to 0 the .

F(0,0) term in The display of this

the Fourier
transform.

image is made
possible by scaling
(making the most
negative value 0, and
scaling all other
values up from that).
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LOW-PASS AND HIGH-PASS FILTERS

Low-pass filter: A filter that attenuates high frequencies while passing low frequencies.

High-pass filter: A filter that attenuates low frequencies while passing high frequencies.

H(u.v)

e / <¢— blurring

Circularly

symmetric \

<¢— sharpening

u

ab

cd
FIGURE 4.7 (a) A two-dimensional lowpass filter function. (b) Result of lowpass filtering the image in Fig. 4.4(a).
(c) A two-dimensional highpass filter function. (d) Result of highpass filtering the image in Fig. 4.4(a).

16



ADDING A CONSTANT TO A HIGH-PASS FILTER

A constant is added to the HP filter so that it does not completely eliminate F(0,0).

FIGURE 4.8

Result of highpass
filtering the image
in Fig. 4.4(a) with
the filter in

Fig. 4.7(c),
modified by
adding a constant
of one-half the
filter height to the
filter function.
Compare with
Fig. 4.4(a).

Notice the improvement!

17



CONVOLUTION I

M-1N-1
%
S, y)*h(x,y) = ZZf(m n)h(x—m,y —n)
T MN m=0 n=0
Discrete convolution For each displacement (x,y), computes the sum
of 2 functions of products over all values of m and n.

S ) h(x,y) < Fu,v)H@u,v) -

= Convolution theorem

S )h(x,y) < Fu,v)* H(u,v)

18



IMPULSE FUNCTION OF STRENGTH A I

An impulse function of strength A

located at coordinates (x,,y,) ° Ad (x — XV — yo)
M-1N-1
Definition: ZZS()C, VAo (x =Xy, y—y,) = As(x,,V,)
x=0 y=0
Unit impulse M-IN-]
located at the S(x, y)A6(x, y) = 5(0,0)
origin: =0 y=0
DFT of the unit 1 M . 1
impulse located  F'(1,v) = —— S(x,y)e PreMEwIN) —
at the origin: N == MN

real constant

19



FOURIER TRANSFORM PAIRS I

S y)Fh(x, y) < Fu,v)H (u,v)

S(x,y)*h(x,y) < J[6(x, y)]H (u,v)

1 1
—h(x,y) < —H(u,v
TN (x, ) TN (u,v)

h(x,y)< H(u,v)
Hence, filters in the spatial and frequency domains

constitute a Fourier transform pair.

If both filters are of the same size, it is more efficient
to do the filtering in the frequency domain.

However, we use much smaller filters in the spatial domain.

20



GAUSSIAN FILTERS

H(M) — Iéle—uz/262

5, Fourier transform pair

h(x) =~2ncde ™"

T

Both are real.

Gaussian curves are intuitive and easy to manipulate.

They behave reciprocally w.r.t one another.
H(u) has a broad profile * h(x) has a narrow profile.

H(u) has a narrow profile * h(x) has a broad profile.

21



The narrower the frequency
domain filter, the more it
will attenuate the low
frequencies, resulting in
increased blurring.

LOWPASS AND HIGHPASS GAUSSIAN FILTERS

_2/22 _2/22
Hu)=Ae™ ™" —Be™ '°>*

\ I
4

H(u)
Y

u)

Lt 4

Fourier transform pair ﬁ

We can implement lowpass
filtering in the spatial
domain by using a mask
with all positive
coefficients.

L 3

2 examples

h(x) / w

201

2|1

X)

R

0

ab

¢ d

FIGURE 4.9

(a) Gaussian
frequency domain
lowpass filter.

(b) Gaussian
frequency domain
highpass filter.

(c) Corresponding
lowpass spatial
filter.

(d) Corresponding
highpass spatial
filter. The masks
shown are used in
Chapter 3 for
lowpass and
highpass filtering.

The spatial filter has both
negative and positive
filters.

h(x) = \/27TGIA6_2”2G‘2X2 —2n0,Be”" 7

2 2.2

22



SMOOTHING AND SHARPENING FILTERS

O Smoothing filters
0 Ideal lowpass filters (very sharp)
0 Butterworth lowpass filters
0 Gaussian lowpass filters (very smooth)

Butterworth filter parameter: filter order

* High values: filter has the form of the ideal filter.

* Low values: filter has the form of the Gaussian filter.

Q Sharpening filters
0 Ideal highpass filters
0 Butterworth highpass filters
0 Gaussian highpass filters

23



2-D IDEAL LOWPASS FILTERS

- < Nonnegative
1 ifD(u,v)sD, «— quantity

H(u,v) = (
0 if D(u,v)>D,

T

Distance from (u,v) to the
center of the frequency rectangle

Image size: MxN
Center of the frequency rectangle: (u,v) = (M/2, N/2)
Distance to the center: D(u,v) = [(u — MI2)? + (v — NI2)?]"2

The lowpass filters in this chapter are radially
symmetric.

24



2-D IDEAL LOWPASS FILTERS

H(u,v) H(u,v)

Y

Cutoff frequency

Dy

abc

= D(u,v)

FIGURE 4.10 (a) Perspective plot of an ideal lowpass filter transfer function. (b) Filter displayed as an

image. (c) Filter radial cross section.

25



2-D IDEAL LOWPASS FILTERS AS A FUNCTION OF
CUTOFF FREQUENCIES

M-1N-I1

Total image power: PT — Z ZP(M’ V)

u=0 v=0

A circle of radius r
encloses a percent a =100 P u,v / P
of the power: ; Z (w,v) 1y

od
I

aaaaaaadd

ab

Radius = 230 pixels

FIGURE 4.11 (a) An image of size 500 X 500 pixels and (b) its Fourier spectrum. The
superimposed circles have radii values of 5. 15, 30, 80, and 230, which enclose 92.0
94.6,96.4,98.0, and 99.5% of the image power, respectively.

26



Ringing is

characteristics of coe a

ideal filters

ILP FILTERING WITH RADII 5,15,30,80,230

aaaaaaad

e

. Increase in filter radius

\-o.l.

Ideal lowpass ‘ee a

filtering is not very
practical but they

Less power removal
so B . . -

&a
i

al.!a“uiaa

Less blurring

can be STEEE S
implemented on a
computer to study co-enEE
their behavior. a

LN J

wd
T

aaaaaaaad aaaaaaad

a b FIGURE 4.12 (a) Original image. (b)~(f) Results of ideal lowpass filtering with cutoff
¢ d frequencies set at radii values of 5. 15, 30, 80, and 230, as shown in Fig. 4.11(b). The
¢ [ power removed by these filters was 8,5.4,3.6,2, and 0.5% of the total, respectively.
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BLURRING AS A CONVOLUTION PROCESS

e

Y
R |

Gray-scale profile of a
diagonal scan line
through the center —>
of the filtered image.
Fal Fal
IR
FIGURE 4.13 (a) A frequency-domain ILPF of radius 5. (b) Corresponding spatial

filter (note the ringing). (¢) Five impulses in the spatial domain, simulating the values
of five pixels. (d) Convolution of (b) and (c) in the spatial domain.

b d

*

Obtained using the
filter to its right.

Gray-scale profile of a
horizontal scan line
through the center

of the spatial filter.
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BUTTERWORTH LOWPASS FILTERS I

1
H(u,v) = :
T 1+[D(u,v)/D,]™"
BLPF of order n Du,v)=[(u-M/2)*+(v-N/2)*1"*

BLPF transfer function does not have a sharp
discontinuity that establishes a clear cutoff.

29



BLPF WITH ORDERS 1 THROUGH 4

= D(u, v)

a1 lbiiE

FIGURE 4.14 (a) Perspective plot of a Butterworth lowpass filter transfer function. (b) Filter displayed as an
image. (¢) Filter radial cross sections of orders 1 through 4.




BUTTERWORTH FILTERING WITH RADII 5,15,30,80,230 I

SRl J -

coe a ‘
AT

Ringing is not visiblein 2a2aaaaa | d
any of these images.

.4 [.~Q
NI 111

«annd88 | .22222a8

ol | @
TSI

aaaaaaadd aaaaaaadad
FIGURE 4.15 (a) Original image. (b)-(f) Results of filtering with BLPFs of order 2,
[T Irequenci iof 5,15

ab
¢ d with cutoff quencies at radii of 5, 15, 30, 80, and 230, as shown in Fig. 4.11(b).
e [ Compare with Fig. 4.12.




BLPFS OF ORDER 1,2,5,20

exhibits the characteristics

no ringing mild ringing xhibits th
of the

no negative values small negative values

\ \ v

A

To faciliate comparisons,
additional enhancing with
a gamma transformation
was applied to all images.

abcd
FIGURE 4.16 (a)—(d) Spatial representation of BLPFs of order 1, 2.5, and 20, and corresponding gray-level
profiles through the center of the filters (all filters have a cutoff frequency of 5). Note that ringing increases

as a function of filter order.
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GAUSSIAN LOWPASS FILTERS I

2 2
H(u, V) — e_D (u,v)/20 <« O isameasure of the spread

T of the Gaussian curve.

Du,v)=[(u-M/2)* +(v=N/2)*]""

A =1 (to be consistent with the other filters)

The inverse Fourier transform of the Gaussian lowpass filter is also
Gaussian.

® A spatial Gaussian filter will have no ringing.
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GLPFS WITH DIFFERENT o VALUES

H(u,v) H(u,v)
1.0

0.667

D, = 100

D(u.v)

S )l e

FIGURE 4.17 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c) Filter
radial cross sections for various values of D,,.
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GAUSSIAN FILTERING WITH RADII 5,15,30,80,230

Y
=

aaaaaaaad

d

no ringing

N

wd
I

..n.l.ldﬂu

L |
il

;.aaaaaaa

2
LA

aaaaaaaad

Py
i a

aaaaaaad

FIGURE 4.18 (a) Original image. (b)-(f) Results of filtering with Gaussian lowpass a b
filters with cutofl frequencies set at radii values of 5. 15, 30, 80, and 230, as shown in ¢

Fig. 4.11(b). Compare with Figs.4.12 and 4.15.

¢




ab

FIGURE 4.19

(a) Sample text of
poor resolution
(note broken
characters in
magnified view).
(b) Result of
filtering with a
GLPF (broken
character
segments were
joined).

PRACTICAL APPLICATION OF LPF — MACHINE
PERCEPTION

Historicaliy, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"

as 1900 rather than tt%r
2000.

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"

as 1900 rather than the ygar
2000. /

D
T

Machine recognition systems have

ea
T

difficulty in reading broken characters.

GLPF with D, = 80
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PRACTICAL APPLICATION OF LPF — PRINTING &
PUBLISHING

Smoothed image looks
soft and pleasing!

|

abc

FIGURE 4.20 (a) Original image (1028 X 732 pixels). (b) Result of filtering with a GLPF with D, = 100.
(c) Result of filtering with a GLPF with D, = 80. Note reduction in skin fine lines in the magnified sections
of (b) and (c).
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PRACTICAL APPLICATION OF LPF — PROCESSING
SATELLITE AND AERIAL IMAGES

Boundaries between water
bodies were caused by
loop currents.

More blurring to make

] large features
Scan lines are reduced. recognizable..

FIGURE 4.21 (a) Image showing prominent scan lines. (b) Result of using a GLPF with D, = 30. (¢) Result
of using a GLPF with D, = 10. (Original image courtesy of NOAA.)
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SHARPENING FREQUENCY DOMAIN FILTERS

Blurring is achieved by attenuating the HF components of DFT of an image.

Sharpening is achieved by attenuating the LF components of DFT of an
image.

Only zero-phase-shift filters are considered here.

H, (u,v)=1-H, (u,v)

t T

When LP attenuates Transfer function of the
frequencies, HP passes them. corresponding LP filter

Sharpening filters:
. Ideal highpass filters

. Butterworth highpass filters
. Gaussian highpass filters

39



3 TYPES OF SHARPENING FILTERS

H{u,v)
H(u,v) Lor
| L |
ey, l Diu, v)
* Hu v)
The Butterworth filter ' H{u,v) 10
represents a transition s
between the sharpness ‘ . 5
of the IF and the it
smoothness of the GF. )
-y, ‘ D(u,v)
“ Hiu,v)
H(v) | 1 10
Y/ |
-, D(u, v)

abec
de f
ghi

FIGURE 4.22 Top row: Perspective plot. image representation, and cross section of a typical ideal highpass
filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.
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CORRESPONDING SPATIAL DOMAIN FILTERS

]
[/

abc

FIGURE 4.23 Spatial representations of typical (a) ideal. (b) Butterworth, and (c) Gaussian frequency
domain highpass filters, and corresponding gray-level profiles.

To obtain the spatial domain representation of a frequency domain filter:

1. Multiply H(u,v) by (-1)u+v
2. Compute the inverse DFT
3. Multiply the real part by (-1)x+y
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IDEAL HIGHPASS FILTERS

0 if D(u,v) =D,
H(u,v) =
1 if D(u,v) > D,

- 4
o |
\ ’ ]
A - A
- .
+ a5 98 <

4 ¢ & & O @ P

abc

FIGURE 4.24 Results of ideal highpass filtering the image in Fig. 4.11(a) with D, = 15, 30, and 80,
respectively. Problems with ringing are quite evident in (a) and (b).
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BUTTERWORTH HIGHPASS FILTERS

abic

O

" L - e
a a 4
iaAdad & &

FIGURE 4.25 Results of highpass filtering the image in Fig. 4.11(a) using a BHPF of order 2 with D, = 15.

30. and 80, respectively. These results are much smoother than those obtained with an ILPF.
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GAUSSIAN HIGHPASS FILTERS

H(U,V) _ 1 _ e—Dz(u,v)/ZDg

results are smoother than

with the previous 2 filters.

y

abc

FIGURE 4.26 Results of highpass filtering the image of Fig. 4.11(a) using a GHPF of order 2 with D, = 15.
30, and 80, respectively. Compare with Figs. 4.24 and 4.25.
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