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CHAPTER 4:  IMAGE ENHANCEMENT IN THE 
FREQUENCY DOMAIN

❑ French mathematician J. B. J. Fourier was born in 1768.
❑ He died of heart disease at the age of 59.
❑ Fourier Series:  Any periodic function can be expressed 

as the sum of complex exponentials (sines and/or 
cosines) of different frequencies, each multiplied by a 
different coefficient.
� f(x):  single variable, continuous function with period T0

❑ Fourier Transform:  Non-periodic functions can also be 
represented in terms of complex exponentials.
� f(x):  single variable, continuous function.  

Fourier transform pair
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FOURIER SERIES

+
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FOURIER TRANSFORM IN 2 VARIABLES

Fourier Transform can easily be extended to 2 variables:
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ONE-DIMENSIONAL DFT AND ITS INVERSE

:  discrete function of one variable

Approximately M2 summations and multiplications to compute 

The DFT and its inverse always exist. 
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FREQUENCY DOMAIN & FREQUENCY 
COMPONENTS

The domain over which the values of F(u) range is called the frequency domain.

Each of the M terms of F(u) is called a frequency component of the transform.

u & F(u): frequency domain & frequency components.
x and f(x): time domain and time components.

A useful analogy:  Compare Fourier transform to a glass prism.

▪ Glass prism:  a physical device that separates light into its various color components.

▪ Fourier transform:  a mathematical prism that separates a function into various  
components based on frequency content.  
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FOURIER TRANSFORM IN POLAR COORDINATES

where and 

magnitude phase angle

power spectrum
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A ONE-DIMENSIONAL EXAMPLE

M = 1024
A = 1
K = 8

Important things to note:

1. The height of the 
spectrum doubled as 
the area under the 
curve in the x-domain 
doubled.

2. The # of zeros in the 
spectrum in the same 
interval doubled as 
the length of the 
function doubled.

M = 1024
A = 1
K = 16

It is common practice to multiply f(x)
by (-1)x before taking the transform.
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SAMPLES IN SPATIAL AND FREQUENCY DOMAINS

  M samples

:  first point in the sequence

  M samples

:  first point in the sequence
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TWO DIMENSIONAL DFT AND ITS INVERSE

   

Polar coordinates:

Power spectrum:

spatial variables

frequency variables
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SHIFTING OF ORIGIN

   

Fourier 
Transform

This shifts the origin 
of F(u,v) to (M/2,N/2).

If f(x,y) is an image, the value of DFT at 
the origin is equal to the average gray 
level of the image.

•

dc component

•

Spectrum is symmetric

f(x,y) is real:

 and 
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CENTERING THE SPECTRUM

   

Image was multiplied by (-1)x+y 

prior to computing the transform.
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RELATIONSHIP BETWEEN THE DFT COMPONENTS 
AND SPATIAL CHARACTERISTICS OF AN IMAGE

   

Frequency is directly related to the rate of change.

DFT components can be associated with patterns of intensity variations in an image.

2 principal features:

1. Strong edges that 
run approx. at 
±450.

2. 2 white oxide 
protrusions.

Correspond to the 
strong edges.

Corresponds to the 
long protrusion.

Corresponds to the 
short protrusion.
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BASIC STEPS IN FREQUENCY DOMAIN FILTERING

   

(-1)x+y

Cropping to even dimensions
Gray-level scaling
Conversion to floating point on input
Conversion to 8-bit format on output
Etc.

Complex 

Real filter

Complex 

Imaginary components 
set to zero.

1. Multiply the input image by (-1)x+y

2. Compute F(u,v)
3. Multiply F(u,v) by a filter function H(u,v)
4. Compute the inverse DFT
5. Obtain the real part
6. Multiply the real part by (-1)x+y

Each component of H multiplies 
both real and imaginary parts of 
the corresponding component of F.
Such filters are called zero-phase-shift filters.
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AN INTRODUCTORY EXAMPLE OF FILTERING

   

Assume we want the average value of an image to be zero.
Also assume the transform has been centered.

▪ F(0,0) = 0

▪ H(u,v) = 
0  if (u,v) = (M/2, N/2)

1  otherwise

notch filter:  constant function with a notch at the origin  

In reality, the average 
of the displayed image 
cannot be zero. 

The display of this 
image is made 
possible by scaling 
(making the most 
negative value 0, and 
scaling all other 
values up from that).
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LOW-PASS AND HIGH-PASS FILTERS

   

Low-pass filter:  A filter that attenuates high frequencies while passing low frequencies.

High-pass filter:  A filter that attenuates low frequencies while passing high frequencies.

   

Circularly 
symmetric

blurring

sharpening
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ADDING A CONSTANT TO A HIGH-PASS FILTER

   

A constant is added to the HP filter so that it does not completely eliminate F(0,0).

Notice the improvement!
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CONVOLUTION

   
Discrete convolution 
of 2 functions

Convolution theorem

For each displacement (x,y), computes the sum 
of products over all values of m and n.
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IMPULSE FUNCTION OF STRENGTH A

   

An impulse function of strength A 
located at coordinates (x0,y0) •

Definition:

Unit impulse 
located at the 
origin:

DFT of the unit 
impulse located 
at the origin:

real constant
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FOURIER TRANSFORM PAIRS

   

Hence, filters in the spatial and frequency domains 
constitute a Fourier transform pair.

If both filters are of the same size, it is more efficient 
to do the filtering in the frequency domain.

However, we use much smaller filters in the spatial domain.
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GAUSSIAN FILTERS

   

Fourier transform pair

Both are real.

Gaussian curves are intuitive and easy to manipulate.

They behave reciprocally w.r.t one another.

H(u) has a broad profile • h(x) has a narrow profile.

H(u) has a narrow profile • h(x) has a broad profile.
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LOWPASS AND HIGHPASS GAUSSIAN FILTERS

   

Fourier transform pair

We can implement lowpass
filtering in the spatial 
domain by using a mask 
with all positive 
coefficients.

2 examples

The narrower the frequency 
domain filter, the more it 
will attenuate the low 
frequencies, resulting in 
increased blurring.

The spatial filter has both 
negative and positive 
filters.
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SMOOTHING AND SHARPENING FILTERS

   

❑ Smoothing filters
� Ideal lowpass filters (very sharp)
� Butterworth lowpass filters
� Gaussian lowpass filters (very smooth)

❑ Sharpening filters
� Ideal highpass filters
� Butterworth highpass filters
� Gaussian highpass filters

Butterworth filter parameter:  filter order

• High values:  filter has the form of the  ideal filter.

• Low values:  filter has the form of the Gaussian filter. 
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2-D IDEAL LOWPASS FILTERS

H(u,v) = 
1   if D(u,v) ≤ D0

0   if D(u,v) > D0

Nonnegative 
quantity

Image size:  MxN

Center of the frequency rectangle:  (u,v) = (M/2, N/2)

Distance to the center:  D(u,v) = [(u – M/2)2 + (v – N/2)2]1/2

The lowpass filters in this chapter are radially 
symmetric.

 

Distance from (u,v) to the 
center of the frequency rectangle
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2-D IDEAL LOWPASS FILTERS

Cutoff frequency



26

   

2-D IDEAL LOWPASS FILTERS AS A FUNCTION OF 
CUTOFF FREQUENCIES

Total image power:

A circle of radius r 
encloses α percent 
of the power:

Radius = 230 pixels
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ILP FILTERING WITH RADII 5,15,30,80,230

Increase in filter radius

Less power removal

Less blurring

Ringing is 
characteristics of 
ideal filters

Ideal lowpass 
filtering is not very 
practical but they 
can be 
implemented on a 
computer to study 
their behavior.
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BLURRING AS A CONVOLUTION PROCESS

Obtained using the 
filter to its right.

Gray-scale profile of a 
horizontal scan line 
through the center 
of the spatial filter.

Gray-scale profile of a 
diagonal scan line 
through the center 
of the filtered image.
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BUTTERWORTH LOWPASS FILTERS

BLPF of order n

BLPF transfer function does not have a sharp 
discontinuity that establishes a clear cutoff.
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BLPF WITH ORDERS 1 THROUGH 4
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BUTTERWORTH FILTERING WITH RADII 5,15,30,80,230

Ringing is not visible in
any of these images. 
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BLPFS OF ORDER 1,2,5,20

no ringing
no negative values

mild ringing
small negative values

exhibits the characteristics 
of the ILPF

To faciliate comparisons, 
additional enhancing with 
a gamma transformation 
was applied to all images.
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GAUSSIAN LOWPASS FILTERS

A = 1 (to be consistent with the other filters)

σ is a measure of the spread
of the Gaussian curve.

The inverse Fourier transform of the Gaussian lowpass filter is also 
Gaussian.

• A spatial Gaussian filter will have no ringing.
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GLPFS WITH DIFFERENT σ VALUES

σ = D0
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GAUSSIAN FILTERING WITH RADII 5,15,30,80,230

no ringing
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PRACTICAL APPLICATION OF LPF – MACHINE 
PERCEPTION

Machine recognition systems have
difficulty in reading broken characters.

GLPF with D0 = 80
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PRACTICAL APPLICATION OF LPF – PRINTING & 
PUBLISHING

Smoothed image looks 
soft and pleasing!
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PRACTICAL APPLICATION OF LPF – PROCESSING 
SATELLITE AND AERIAL IMAGES

Boundaries between water 
bodies were caused by 
loop currents. Scan lines are reduced.

More blurring to make 
large features 
recognizable..
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SHARPENING FREQUENCY DOMAIN FILTERS

Blurring is achieved by attenuating the HF components of DFT of an image.

Sharpening is achieved by attenuating the LF components of DFT of an 
image.

Only zero-phase-shift filters are considered here.

Transfer function of the 
corresponding LP filter

When LP attenuates 
frequencies, HP passes them.

Sharpening filters:
    

▪     Ideal highpass filters
▪     Butterworth highpass filters
▪     Gaussian highpass filters
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3 TYPES OF SHARPENING FILTERS

The Butterworth filter 
represents a transition 
between the sharpness 
of the IF and the 
smoothness of the GF.
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CORRESPONDING SPATIAL DOMAIN FILTERS

To obtain the spatial domain representation of a frequency domain filter:

1. Multiply H(u,v) by (-1)u+v
2. Compute the inverse DFT
3. Multiply the real part by (-1)x+y
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IDEAL HIGHPASS FILTERS

H(u,v) = 
0   if D(u,v) ≤ D0

1   if D(u,v) > D0
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BUTTERWORTH HIGHPASS FILTERS
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GAUSSIAN HIGHPASS FILTERS

results are smoother than
with the previous 2 filters. 


