
Chapter 13 1

Chapter 13

Digital Signatures and

Authentication Protocols

Chapter 13 2

Digital Signatures

• have looked at message authentication

– but does not address issues of lack of trust

• digital signatures provide the ability to:

– verify author, date & time of signature

– authenticate message contents

– be verified by third parties to resolve disputes

• hence include authentication function with
additional capabilities

Chapter 13 3

Digital Signature Properties

• must depend on the message signed

• must use information unique to sender

– to prevent both forgery and denial

• must be relatively easy to produce

• must be relatively easy to recognize & verify

• be computationally infeasible to forge

– with new message for existing digital signature

– with fraudulent digital signature for given message

• be practical save digital signature in storage

Chapter 13 4

Direct Digital Signatures

• involve only sender & receiver

• assumed receiver has sender’s public-key

• digital signature made by sender signing
entire message or hash with private-key

• can encrypt using receivers public-key

• important that sign first then encrypt
message & signature

• security depends on sender’s private-key

Chapter 13 5

Arbitrated Digital Signatures

• involves use of arbiter A

– validates any signed message

– then dated and sent to recipient

• requires suitable level of trust in arbiter

• can be implemented with either private or

public-key algorithms

• arbiter may or may not see message

Chapter 13 6

Authentication Protocols

• used to convince parties of each others

identity and to exchange session keys

• may be one-way or mutual

• key issues are

– confidentiality – to protect session keys

– timeliness – to prevent replay attacks

Chapter 13 7

Replay Attacks

• where a valid signed message is copied and later
resent

– simple replay

– repetition that can be logged

– repetition that cannot be detected

– backward replay without modification

• countermeasures include

– use of sequence numbers (generally impractical)

– timestamps (needs synchronized clocks)

– challenge/response (using unique nonce)

Chapter 13 8

Using Symmetric Encryption

• as discussed previously can use a two-level

hierarchy of keys

• usually with a trusted Key Distribution

Center (KDC)

– each party shares own master key with KDC

– KDC generates session keys used for

connections between parties

– master keys used to distribute these to them

Chapter 13 9

Needham-Schroeder Protocol

• original third-party key distribution protocol

• for session between A B mediated by KDC

• protocol overview is:

1. A→KDC: IDA || IDB || N1

2. KDC→A: EKa[Ks || IDB || N1 || EKb[Ks||IDA]]

3. A→B: EKb[Ks||IDA]

4. B→A: EKs[N2]

5. A→B: EKs[f(N2)]

Chapter 13 10

Needham-Schroeder Protocol

• used to securely distribute a new session key for

communications between A & B

• but is vulnerable to a replay attack if an old

session key has been compromised

– then message 3 can be resent convincing B that is

communicating with A

• modifications to address this require:

– timestamps (Denning 81)

– using an extra nonce (Neuman 93)

Chapter 13 11

Using Public-Key Encryption

• have a range of approaches based on the use

of public-key encryption

• need to ensure have correct public keys for

other parties

• using a central Authentication Server (AS)

• various protocols exist using timestamps or

nonces

Chapter 13 12

Denning AS Protocol

• Denning 81 presented the following:

1. A→AS: IDA || IDB

2. AS→A: EKRas[IDA||KUa||T] || EKRas[IDB||KUb||T]

3. A→B: EKRas[IDA||KUa||T] || EKRas[IDB||KUb||T] ||

EKUb[EKRas[Ks||T]]

• note session key is chosen by A, hence AS need

not be trusted to protect it

• timestamps prevent replay but require

synchronized clocks

Chapter 13 13

One-Way Authentication

• required when sender & receiver are not in

communications at same time (eg. email)

• have header in clear so can be delivered by

email system

• may want contents of body protected &

sender authenticated

Chapter 13 14

Using Symmetric Encryption

• can refine use of KDC but can’t have final
exchange of nonces, vis:

1. A→KDC: IDA || IDB || N1

2. KDC→A: EKa[Ks || IDB || N1 || EKb[Ks||IDA]]

3. A→B: EKb[Ks||IDA] || EKs[M]

• does not protect against replays

– could rely on timestamp in message, though
email delays make this problematic

Chapter 13 15

Public-Key Approaches

• have seen some public-key approaches

• if confidentiality is major concern, can use:

A→B: EKUb[Ks] || EKs[M]

– has encrypted session key, encrypted message

• if authentication needed use a digital signature

with a digital certificate:

A→B: M || EKRa[H(M)] || EKRas[T||IDA||KUa]

– with message, signature, certificate

Chapter 13 16

Digital Signature Standard (DSS)

• US Govt approved signature scheme FIPS 186

• uses the SHA hash algorithm

• designed by NIST & NSA in early 90's

• DSS is the standard, DSA is the algorithm

• a variant on ElGamal and Schnorr schemes

• creates a 320 bit signature, but with 512-1024 bit
security

• security depends on difficulty of computing
discrete logarithms

Chapter 13 17

DSA Key Generation

• have shared global public key values (p,q,g):

– a large L-bit prime number p

• where L= 512 to 1024 bits and is a multiple of 64

– choose q, a 160 bit prime factor of p-1

– choose g = h(p-1)/q

• where 1<h<p-1, h(p-1)/q (mod p) > 1

• users choose private & compute public key:

– choose x<q

– compute y = gx (mod p)

Chapter 13 18

DSA Signature Creation

• to sign a message M the sender:

– generates a random signature key k, k<q

– nb. k must be random, be destroyed after use,
and never be reused

• then computes signature pair:
r = (gk(mod p))(mod q)

s = (k-1.SHA(M)+ x.r)(mod q)

• sends signature (r,s) with message M

Chapter 13 19

DSA Signature Verification

• having received M & signature (r,s)

• to verify a signature, recipient computes:
w = s-1(mod q)

u1= (SHA(M).w)(mod q)

u2= (r.w)(mod q)

v = (gu1.yu2(mod p)) (mod q)

• if v=r then signature is verified

• see book web site for details of proof why

Chapter 13 20

Summary

• have considered:

– digital signatures

– authentication protocols (mutual & one-way)

– digital signature standard

