
Chapter 12 1

Chapter 12

Hash Algorithms

Chapter 12 2

Hash Algorithms

• see similarities in the evolution of hash functions

& block ciphers

– increasing power of brute-force attacks

– leading to evolution in algorithms

– from DES to AES in block ciphers

– from MD4 & MD5 to SHA-1 & RIPEMD-160 in hash

algorithms

• likewise tend to use common iterative structure as

do block ciphers

Chapter 12 3

MD5

• designed by Ronald Rivest (the R in RSA)

• latest in a series of MD2, MD4

• produces a 128-bit hash value

• until recently was the most widely used
hash algorithm

– in recent times have both brute-force &
cryptanalytic concerns

• specified as Internet standard RFC1321

Chapter 12 4

MD5 Overview

1. pad message so its length is 448 mod 512

2. append a 64-bit length value to message

3. initialise 4-word (128-bit) MD buffer (A,B,C,D)

4. process message in 16-word (512-bit) blocks:

– using 4 rounds of 16 bit operations on message block

& buffer

– add output to buffer input to form new buffer value

5. output hash value is the final buffer value

Chapter 12 5

MD5 Overview

Chapter 12 6

MD5 Compression Function

• each round has 16 steps of the form:
a = b+((a+g(b,c,d)+X[k]+T[i])<<<s)

• a,b,c,d refer to the 4 words of the buffer, but used
in varying permutations

– note this updates 1 word only of the buffer

– after 16 steps each word is updated 4 times

• where g(b,c,d) is a different nonlinear function in
each round (F,G,H,I)

• T[i] is a constant value derived from sin

Chapter 12 7

MD5 Compression Function

Chapter 12 8

MD4

• precursor to MD5

• also produces a 128-bit hash of message

• has 3 rounds of 16 steps vs 4 in MD5

• design goals:

– collision resistant (hard to find collisions)

– direct security (no dependence on "hard" problems)

– fast, simple, compact

– favours little-endian systems (eg PCs)

Chapter 12 9

Strength of MD5

• MD5 hash is dependent on all message bits

• Rivest claims security is good as can be

• known attacks are:

– Berson 92 attacked any 1 round using differential
cryptanalysis (but can’t extend)

– Boer & Bosselaers 93 found a pseudo collision (again
unable to extend)

– Dobbertin 96 created collisions on MD compression
function (but initial constants prevent exploit)

• conclusion is that MD5 looks vulnerable soon

Chapter 12 10

Secure Hash Algorithm (SHA-1)

• SHA was designed by NIST & NSA in 1993,

revised 1995 as SHA-1

• US standard for use with DSA signature scheme

– standard is FIPS 180-1 1995, also Internet RFC3174

– nb. the algorithm is SHA, the standard is SHS

• produces 160-bit hash values

• now the generally preferred hash algorithm

• based on design of MD4 with key differences

Chapter 12 11

SHA Overview

1. pad message so its length is 448 mod 512

2. append a 64-bit length value to message

3. initialise 5-word (160-bit) buffer (A,B,C,D,E) to

(67452301,efcdab89,98badcfe,10325476,c3d2e1f0)

4. process message in 16-word (512-bit) chunks:

– expand 16 words into 80 words by mixing & shifting

– use 4 rounds of 20 bit operations on message block &

buffer

– add output to input to form new buffer value

5. output hash value is the final buffer value

Chapter 12 12

Chapter 12 13

SHA-1 Compression Function

• each round has 20 steps which replaces the 5

buffer words thus:
(A,B,C,D,E) <-

(E+f(t,B,C,D)+(A<<5)+Wt+Kt),A,(B<<30),C,D)

• a,b,c,d refer to the 4 words of the buffer

• t is the step number

• f(t,B,C,D) is nonlinear function for round

• Wt is derived from the message block

• Kt is a constant value derived from sin

Chapter 12 14

SHA-1 Compression Function

Chapter 12 15

SHA-1 versus MD5

• brute force attack is harder (160 vs 128 bits
for MD5)

• not vulnerable to any known attacks
(compared to MD4/5)

• a little slower than MD5 (80 vs 64 steps)

• both designed as simple and compact

• optimised for big endian CPU's (vs MD5
which is optimised for little endian CPU’s)

Chapter 12 16

Revised Secure Hash Standard

• NIST have issued a revision FIPS 180-2

• adds 3 additional hash algorithms

• SHA-256, SHA-384, SHA-512

• designed for compatibility with increased

security provided by the AES cipher

• structure & detail is similar to SHA-1

• hence analysis should be similar

Chapter 12 17

RIPEMD-160

• RIPEMD-160 was developed in Europe as part of
RIPE project in 96

• by researchers involved in attacks on MD4/5

• initial proposal strengthen following analysis to
become RIPEMD-160

• somewhat similar to MD5/SHA

• uses 2 parallel lines of 5 rounds of 16 steps

• creates a 160-bit hash value

• slower, but probably more secure, than SHA

Chapter 12 18

RIPEMD-160 Overview

1. pad message so its length is 448 mod 512

2. append a 64-bit length value to message

3. initialise 5-word (160-bit) buffer (A,B,C,D,E) to

(67452301,efcdab89,98badcfe,10325476,c3d2e1f0)

4. process message in 16-word (512-bit) chunks:

– use 10 rounds of 16 bit operations on message block
& buffer – in 2 parallel lines of 5

– add output to input to form new buffer value

5. output hash value is the final buffer value

Chapter 12 19

RIPEMD-160 Round

Chapter 12 Computer Control and Security 20

RIPEMD-160 Compression Function

Chapter 12 Computer Control and Security 21

RIPEMD-160 Design Criteria

• use 2 parallel lines of 5 rounds for increased

complexity

• for simplicity the 2 lines are very similar

• step operation very close to MD5

• permutation varies parts of message used

• circular shifts designed for best results

Chapter 12 Computer Control and Security 22

RIPEMD-160 versus MD5 & SHA-1

• brute force attack harder (160 like SHA-1 vs 128
bits for MD5)

• not vulnerable to known attacks, like SHA-1
though stronger (compared to MD4/5)

• slower than MD5 (more steps)

• all designed as simple and compact

• SHA-1 optimised for big endian CPU's vs
RIPEMD-160 & MD5 optimised for little endian
CPU’s

Chapter 12 Computer Control and Security 23

Keyed Hash Functions as MACs

• have desire to create a MAC using a hash function
rather than a block cipher

– because hash functions are generally faster

– not limited by export controls unlike block ciphers

• hash includes a key along with the message

• original proposal:
KeyedHash = Hash(Key|Message)

– some weaknesses were found with this

• eventually led to development of HMAC

Chapter 12 Computer Control and Security 24

HMAC

• specified as Internet standard RFC2104

• uses hash function on the message:
HMACK = Hash[(K

+ XOR opad) ||

 Hash[(K+ XOR ipad)||M)]]

• where K+ is the key padded out to size

• and opad, ipad are specified padding constants

• overhead is just 3 more hash calculations than the
message needs alone

• any of MD5, SHA-1, RIPEMD-160 can be used

Chapter 12 Computer Control and Security 25

HMAC Overview

Chapter 12 Computer Control and Security 26

HMAC Security

• know that the security of HMAC relates to
that of the underlying hash algorithm

• attacking HMAC requires either:

– brute force attack on key used

– birthday attack (but since keyed would need to
observe a very large number of messages)

• choose hash function used based on speed
verses security constraints

Chapter 12 Computer Control and Security 27

Summary

• have considered:

– some current hash algorithms:

• MD5, SHA-1, RIPEMD-160

– HMAC authentication using a hash function

