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Abstract

Medical image acquisition plays a significant role in the diagnosis and management of dis-
eases. Magnetic Resonance (MR) and Computed Tomography (CT) are considered two of the
most popular modalities for medical image acquisition. Some considerations, such as cost and
radiation dose, may limit the acquisition of certain image modalities. Therefore, medical image
synthesis can be used to generate required medical images without actual acquisition. In this
paper, we propose a paired–unpaired Unsupervised Attention Guided Generative Adversarial
Network (uagGAN) model to translate MR images to CT images and vice versa. The uagGAN
model is pre-trained with a paired dataset for initialization and then retrained on an unpaired
dataset using a cascading process. In the paired pre-training stage, we enhance the loss function
of our model by combining the Wasserstein GAN adversarial loss function with a new combi-
nation of non-adversarial losses (content loss and L1) to generate fine structure images. This
will ensure global consistency, and better capture of the high and low frequency details of the
generated images. The uagGAN model is employed as it generates more accurate and sharper
images through the production of attention masks. Knowledge from a non-medical pre-trained
model is also transferred to the uagGAN model for improved learning and better image trans-
lation performance. Quantitative evaluation and qualitative perceptual analysis by radiologists
indicate that employing transfer learning with the proposed paired-unpaired uagGAN model can
achieve better performance as compared to other rival image-to-image translation models.
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1. Introduction

Medical image analysis can assist in revealing the internal structure of body organs. It is
widely used in many applications, such as classification [1], detection [2], segmentation [3],
and registration [4]. Image acquisition is considered as a critical step for subsequent image
analysis. There are many medical image acquisition modalities including Magnetic Resonance
(MR), Computed Tomography (CT), Positron Emission Tomography (PET), and Single Photon
Emission Computed Tomography (SPECT). The most widely used modalities for brain tumor
imaging are MR and CT, where MR is specifically used for tumor volume segmentation and the
diagnosis of neuronal pathology (i.e., Parkinson’s disease), while CT is used for radiotherapy
treatment planning [5].

Medical image acquisition faces many considerations, such as cost, radiation dose, patient
age, and limitation of images for certain types of brain disease. Therefore, we could benefit from
medical image synthesis by generating required medical images without any physical scan [6].
Radiation is emitted during CT acquisition, thereby limiting the number of scans a patient could
undergo without exceeding the permitted radiation levels. However, MR does not involve any
radiations. Therefore, various methods have been proposed for CT images estimation from the
available MR images. On the other hand, MR imaging is considered costly, and it takes more time
than CT scans. If the latter was the major motivation, then MR images could be generated from
its corresponding CT images [7]. In some cases, MR and CT imaging are needed. For example,
MR scan could show neural elements (spinal cord and nerve roots) exquisitely, but accurately
differentiating between bone and soft tissue using MR is difficult. In this case, a CT scan that
could accurately delineate bony boundaries, is required [5]. In this paper, the term CT-MR image
synthesis is used to indicate bidirectional translation between CT and MR images.

CT-MR image synthesis is useful in a variety of applications, including data augmentation, in
which the generated images can be used to improve generalizability in classification and segmen-
tation tasks [8]. CT-MR image synthesis is also used for CT-MR registration, which is necessary
for accurate delineation of the tumor and other structures [4]. It is also used as a first step for
medical image segmentation [9]. Therefore, accurate CT-MR synthesis model is needed.

A Generative Adversarial Network (GAN) is considered an interesting model for CT-MR
image synthesis. It is the next-generation artificial intelligent approach that has shown promising
results in image generation and image synthesis[10] [11] [12]. For image synthesis, the GAN
model does not generate images from a random noise vector as input. In this case, the input
is an image required to be mapped to another image domain. The GAN model needs to be fed
with training datasets, which could either be paired or unpaired. Dealing with unpaired training
datasets is difficult, because mapping between input and output does not exist. Treating the
problem as unsupervised learning makes the task of developing a GAN model harder than when
paired trained datasets exist. However, paired training datasets are not available for many tasks
in practice. In addition, obtaining paired training datasets for several applications is relatively
expensive and difficult [13]. Regarding CT-MR image synthesis, the acquisition of CT and MR
images separately is time-consuming, costly, and a burden to the patient. Therefore, the available
training datasets are mostly unpaired.

Another issue that faces CT-MR image synthesis using GAN model is the size of the training
datasets, where majority of the available datasets are small. Given that the number of train-
ing images is critical in obtaining realistic images, transfer learning and data augmentation are
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usually used to overcome the problem of small training datasets [14]. The data augmentation al-
gorithm generates data by performing a series of transformations on the original data, including
elastic transformations, pixel-level transformations, and other transformations [15]. GAN is a
powerful model that has recently been used as a novel data augmentation technique to increase
the size of the training dataset [8]. GAN-based data augmentation methods are more appropri-
ate for medical image generation than traditional methods because color adjustment or rotation,
for example, may alter the model’s ability to distinguish medical images. Transfer learning is
expressed through the use of pre-trained models, which are trained on a large dataset to solve a
problem that is similar to the one that we aim to solve in the present study. The pre-trained model
can be used as the starting point for the model on the second task of interest, where the model
continues to train with the new dataset. The learned weights and biases will be copied from the
pre-trained network to the target network [16].

Specifying the location and extent of tumors is critical for medical diagnosis, prognosis and
surgical planning. Automatic tumor segmentation helps specialists in treatment planning and
tumor measurements. Segmentation of the bony structure from MR and segmentation of soft
tissues from CT are quite challenging. As a solution for bone structure segmentation and MR
image availability, GAN is used to generate a realistic CT image from MR image and perform
segmentation on the generated CT image.

Most previous work lack proper synthesis of fine tissue details with large variations of brain
anatomies across subjects. This is especially evident with CT-MR image synthesis which still
remains a challenge, and is usually hindered by the problem of small-size paired datasets (e.g.
pix2pix model [17] and Conditional Adversarial Networks (cGAN) [18]). On the other hand,
the state-of-the-art unpaired models, such as cycle generative adversarial networks (cycleGAN),
have their limitations. CycleGAN models utilize the cycle consistency loss function to handle the
small-size paired MR-CT datasets problem, but it may lead to mismatch of anatomical structures
in the generated images [19][20]. Therefore, there is no guarantee that the input and generated
images are structurally consistent. Figure 1 shows that the generated images are quite different
from the ground truth images, especially in skull region in case of CT and in soft tissue area in
case of MR.

Figure 1: CycleGAN image synthesis showing both (a) ground truth, and (b) generated image, for CT (first row) and MR
(second row), respectively. (Red arrows indicate regions with discrepancies)

In this paper, we develop a new Unsupervised Attention Guided Generative Adversarial Net-
work (uagGAN) model for bidirectional MR-CT image synthesis. The proposed architecture
takes into consideration both paired and unpaired image data. Pre-training is performed for fine-
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tuning the network parameters with a paired dataset. Then unsupervised training follows with
unpaired image data with an optimized loss function. Loss functions are known to give variable
errors for the same prediction, and thus could have a considerable effect on the performance
of the model. For this purpose, a Wasserstein GAN (WGAN) adversarial loss function is inte-
grated with a set of non-adversarial loss functions to generate more realistic high-quality clinical
images. WGAN employs the Earth Mover’s distance that overcomes the mode collapse prob-
lem [21], and it is chosen after a comparison with the state-of-the-art loss functions. The main
contributions of this research are as follows:

1. The paired-unpaired uagGAN model is initialized by supervised pre-training and then sub-
sequently followed by unsupervised training for fine-tuning the medical image translation
task.

2. Both high and low frequency components of the output images are captured by enhanc-
ing the adversarial loss function with an optimized combination of non-adversarial loss
functions.

3. The proposed model is applied on real cases for bidirectional MR-to-CT and CT-to-MR
translations, where knowledge transfer from a non-medical pre-trained model is used to
tackle the problem of limited-size of paired MR-CT image data.

4. Performance is quantitatively evaluated by four different well-known image quality assess-
ment metrics, and qualitatively through a perceptual study by three experienced radiolo-
gists.

The rest of the paper is organized as follows: Section 2 presents a review of related work of
image synthesis in the medical imaging domain. Section 3 provides coverage of image-to-image
translation using GAN models. Section 4 explains the proposed paired-unpaired unsupervised
learning model with transfer learning. Section 5 discusses experimental results and performance.
Section 6 contains the discussion. Section 7 is the conclusion and future work.

2. Related Works

Deep learning models have been developed for image-to-image translation with state-of-the-
art results. Convolutional neural network (CNN) is a popular deep learning model for computer
vision and medical imaging fields [22]. Xiang et al. [23] proposed a model for MR-to-CT
synthesis using deep embedding CNN (DECNN). Li et al. [24] applied the recursive CNN with
improved super-resolution algorithm to estimate the PET image from the MR image, which
could increase the performance of the generated images without increasing the parameterized
complexity.

CNN has introduced several models for image generation and translation to improve the
modeling of nonlinear mapping from input to output and produce more realistic images [25].
The most prominent models among them are the GAN models. These models have achieved
promising results in the field of image generation as they produce more realistic images even in
unsupervised settings. In 2014, Goodfellow et al. [26] proposed the GAN model with an aim
to generate new images from scratch. Consequently, the idea expanded to address the problem
of image-to-image translation with more promising results. Several research works have been
performed to improve the performance of the GAN model by modifying either the GAN archi-
tecture or its adversarial loss function, which enhanced the training process and generated more
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realistic images. Emami et al. [27] proposed a GAN model to generate CT images from T1
MR images. They used a residual network for the generator network and CNN with five con-
volutional layers for the discriminator networks. They performed five-fold cross-validation to
evaluate their model. They also compared their model with the CNN model. The results showed
that their model outperformed the CNN model, the generated CT images preserved details better
than CNN, and the abnormal regions in the generated MR images were well represented.

The GAN models have been recently used to perform medical image-to-image translation
tasks. These models are classified as supervised and unsupervised models. For supervised mod-
els, pix2pix is a general-purpose model for image-to-image translation tasks. Nie et al. [6]
utilized the pix2pix model with the gradient loss function added to the generator architecture for
MR-to-CT translation. Due to patch-wise training, this proposed architecture has a limited mod-
eling capacity, which rendered the invisibility of the training. Therefore, the auto-context model
(ACM) could be used to train multiple GAN models one after another and enhance the results.
The pix2pix model has been also utilized by Wolterink et al. [28] for the translation of low-dose
CT images into their high-dose counterpart. It also has been used with Wasserstein distance and
perceptual loss by Yang et al. [29] for CT denoising and 2T-to-1T MR translation [30]. Han
et al. [31] incrementally incorporated a high-roughness bounding box into progressive growing
GAN (PGGAN) and proposed a conditional PGGAN (CPGGAN) to place regions of interest
(in this case, brain metastases) at desired positions/sizes on MR images. This model has been
used to generate additional training data to address the small-sized training dataset issue. The
results showed that the proposed model improved training robustness and increased 10% sensi-
tivity in diagnosis. Cao et al. [32] proposed a framework for medical image generation called
self-supervised collaborative learning. The authors presented an auto-encoder network that was
used to obtain information about the target modality to generate any missing image modality.
The authors also created a mask vector for the target modality to be used as a label. Chen et
al. [33] proposed the Target-aware Generative Adversarial Network, a paired GAN model (Tar-
GAN). TarGAN is a multi-modality image-to-image translation model that uses target area labels
to improve target area generation quality. The TarGAN generator uses a proposed crossing loss
function to translate the entire image and target area. Tang et al. [34] developed a GAN model
for T1 MR-to-CT translation. For its generator, this GAN model employs a U-net network.
The training dataset contains 27 rigidly registered brain cancer MR-CT pairs, whilst the testing
dataset contains 10 pairs to evaluate the performance of the proposed model using mean absolute
error. The clinical volumetric modulated arc therapy protocol was also used, followed by gamma
analysis and a dose–volume histogram comparison on both generated and real CT images.

Several unsupervised models that were trained with unpaired input-target images have been
developed, including CycleGAN [19]. Chartsias et al. [35] utilized cycleGAN to synthesize
cardiac MR images from CT images with an unpaired dataset. Consequently, they applied the
generated MR images in a segmentation task. The findings indicated that the generated MR im-
ages could be accurately used further in medical image segmentation, and these images improved
the accuracy of the used segmentation algorithm by 16%. The authors recommended following
the same approach of CT-to-MR synthesis for other body organs and with more training exam-
ples to improve the results. Hiasa et al. [36] also applied cycleGAN to unpaired head CT and
MR images to synthesize CT images from MR images. They extended cycleGAN by adding
gradient consistency loss to improve the accuracy. In addition, Jiang et al. [37] developed a
model that started with unsupervised CT-to-MR tumor synthesis and then with semi-supervised
tumor segmentation. They utilized cycleGAN with a new introduced loss called tumor-aware



Alaa Abu-Srhan et al. / Computers in Biology and Medicine Volume , 2021, 00 (2021) 1–27 6

loss. Zhang et al. [9] performed cycleGAN for synthesis of realistic-looking 3D images. The
synthesized images were utilized to improve the volume segmentation algorithm. The gener-
ator of this GAN was trained with a shape consistency loss in addition to the cycleGAN loss
functions, and more accurate results were generated. Furthermore, Wei et al. [38] used the cy-
cleGAN model to generate a CT image from an MR image. The original MR and CT images
were registered using traditional mono-modal image registration of the synthesis CT image and
the original CT image. This fast MR-CT image registration method guides the thermal ablation
of liver tumours. Experimental results from a real clinical dataset confirmed that the proposed
method outperforms state-of-the-art methods with high registration accuracy and fast computing.
Han et al.[39] combined noise-to-image GAN and image-to-image GAN to improve the efficacy
of data augmentation for tumour detection. Their proposed model is a two-step GAN for gen-
erating brain MR images to be used in the training stage to handle a small-sized dataset. The
results showed that the proposed two-step GAN-based data augmentation outperforms classic
data augmentation.

Many other GAN models have been developed to translate medical images from one form to
another. For instance, Calimeri et al. [40] proposed a new model of LapGAN to generate MR
images of the human brain. They used quantitative and human-based evaluations to assess the
effectiveness of the proposed method. Nie et al. [7] applied 3D Context-Aware GAN (CGAN)
with ACM and used brain and pelvic datasets to test their proposed method. The 3D CGAN
generated CT images from MR images, while the ACM refined the CT images. The results
indicated that the performance of GAN improved when using the ACM. The authors considered
the task of CT prediction only and claimed that their proposed model could be applied to other
related tasks that include generative process. Zhao et al. [13] suggested Tub-GAN for multiple
realistic-looking retinal image synthesis. Although they utilized small-sized samples of 10–20
images, they indicated that their model works very well. Furthermore, the authors claimed that
the model has the ability to handle image synthesis from the same tubular structure. Dar et al.
[41] offered conditional generative adversarial networks (cGAN) for multi-contrast MRI. Their
proposed model for T1-to-T2 MR synthesis showed enhanced performance by using two types of
losses: pixel-wise loss for registered images and cycle-consistency loss for unregistered images.
The main idea behind cGAN was that the input data fed not only the generator but also the
discriminator.

The GAN models have been employed for other medical applications. For example, Zhao et
al. [42] proposed a cascaded GAN model for bony structure segmentation with deep supervision
discriminator (Deep-supGAN). They generated CT images from MR images and then segmented
the bony structures from both generated images. The combination of the MR and CT images
provided a complete bony structure information needed for the segmentation task. Their model
exhibited two blocks. The first block was for generating CT images from MR images, while
the second block was for bony structure segmentation of the MR images and the generated CT
images. The results showed that the generated CT images had clear structural details and the
bony structure segmentation had more accurate results than the state-of-the-art models. Nema et
al. [43] designed a residual cyclic unpaired encoder–decoder network (RescueNet) to segment an
entire tumour in a brain MR image, followed by the core and enhanced region. RescueNet trains
with an unpaired training dataset to eliminate the need for a paired dataset because preparing
a large paired dataset is difficult. The proposed network was tested on BraTS 2015 and BraTS
2017 datasets, and its performance was evaluated through DICE and sensitivity measurements.
The results showed that the proposed network outperforms existing methods of brain tumour
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segmentation.

In contrast to the current medical image-to-image-translation models, which have been trained
either on paired images or unpaired images, our model has been trained with both paired and un-
paired datasets to handle the registration problem of paired dataset and to tackle the misalignment
problem of the unpaired dataset. Moreover, our work focuses on addressing the size limitation of
the training dataset by transferring knowledge of the non-medical pre-trained model to our med-
ical model. Furthermore, we selected the appropriate combination of loss functions to capture
the high and low frequency details of the generated images and generate fine structure images.

3. Unsupervised Image-to-Image Translation

The GAN models are a class of unsupervised machine learning models. The original GAN
model consists of generative and discriminator neural networks that work with one against the
other and become trained by using the minimax game theory. A generative model attempts to
generate a new image from a random or a very-low-resolution image. Although the generative
model is trained to fool the discriminator, the latter reviews the generated data to decide whether
it belongs to the actual training dataset or not (0 for a fake image and 1 for a real image) [26].
The GAN model architecture is shown in Figure 2.

Figure 2: A typical generative adversarial network architecture.

The GAN model uses adversarial process to estimate the generative model by training its two
models: generative model G and a discriminative model D. These models are fed with training
dataset, which could be paired or unpaired. Paired training dataset consists of training examples
xi (data from first domain) and yi (data from second domain) i = [1, n], where the correspondence
between xi and yi exists, unpaired training dataset consists of a source set {xi} i = 1 . . . n (xi ∈

X, {X: Source domain}) and a target set {y j} j = 1 . . . n (y j ∈ Y, {Y: Target Domain}), with no
information provided as to which xi matches which y j, as shown in Figure 3.

The Conditional Adversarial Networks (cGAN) is an example of paired GAN models. The
cGAN model is a general approach for many image-to-image translation tasks, because it could
be used in a wide range of image domains, and it is considered the first paired GAN model used
for image synthesis. This cGAN model is an extension of the original GAN, but with a change
made to the discriminator input; the generator’s input image is also provided to a discriminator
[18]. The pix2pix model is an extension of cGAN’ work. This model is a general solution
to supervised image-to-image translation problems. It improves image translation output by
changing the loss function of the generator network by adding L1 to the adversarial loss function.
The generator of the pix2pix model translates the input images into target images by minimizing
the adversarial loss and L1 loss functions. This model is very effective in image synthesis, has
the potential to achieve reasonable results, and is widely applicable and easy to adopt [17].
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Figure 3: Paired and unpaired training datasets.

The uagGAN model is an example of unpaired GAN models [44]. The uagGAN model uti-
lizes the attention unsupervised mechanism inspired by the significant role of human perception.
It differs from other unsupervised image-to-image translation models. It focuses its attention
on multiple objects within the image and alters the background in the case of a single object,
leading to a more realistic translation compared with that in other recent relevant approaches.
The uagGAN model follows the same architecture of the cycleGAN model. It adds two attention
networks, AS and AT (source and target), to the cycleGAN model architecture. The uagGAN
model’s two generator is built with a special built-in attention mechanism. These two generators
can generate attention masks by utilizing the attention mechanisms, Mx and My of image x and
y, respectively. In addition to attention masks, they generate the content masks, Rx and Ry, of
images x and y, respectively. It also employs element-wise products to apply the learned mask to
the generated images and then uses the inverse mask to add the background. In other words, the
uagGAN model locates the area that needed to be translated inside the image and then applies
the appropriate translation to that location. In addition, a new loss function called pixel loss was
introduced and used in addition to the cycle consistency loss and the GAN adversarial loss for
enhanced model optimization. The pixel loss is described on Eq. (1).

Figure 4: UagGAN model. Mx and My are the attention masks of x and y images, respectively.

Lpixel(GX→Y ,GY→X) = ||GX→Y (x) − x||1
+||GY→X(y) − y||1

(1)

Where x represents the input image when translating from x to y, and y represents the input
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image when translating from y to x. The generated image from x and y is represented by GX→Y (x)
and GY→X(y), respectively. Pixel loss is used with paired translation models such as pix2pix, but
it is used for unpaired translation in the case of the uagGAN model.

4. Method

The uagGAN model performs bidirectional MR-CT image synthesis using paired–unpaired
data with transfer learning. The first step in establishing the model is to identify the best model
that deals with unpaired training images. We compare state-of-the-art GAN models, namely,
cycleGAN, dualGAN, discoGAN, comboGAN,UNIT, and uagGAN. These models have two
generators. Thus, they can be trained with an unpaired dataset. We follow the model architecture
of Tripathy et al. [45] but we replace cycleGAN with the best unpaired model. The best model
is then trained with paired and unpaired datasets. The paired and unpaired datasets are used to
enhance the translation performance and solve the problem of having a limited paired dataset.
During training with the paired dataset, we modify our model loss function. In this case, the
model functions as a pix2pix model with modification to its loss function to improve model
performance. The knowledge from non-medical pre-trained model has been transferred to our
paired-unpaired model. Algorithm 1 presents the methodology of our paired-unpaired uagGAN
model with transfer learning. Figure 5 illustrate the training steps of our proposed model.

Figure 5: The training process of our proposed paired–unpaired uagGAN with transfer learning.

4.1. Multi-Loss Functions Combination

A well selected and optimized loss function may impact the stability of the GAN model train-
ing stability and performance. In a GAN model, the loss function is considered as an adversarial
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loss that estimates the distance between the distribution of generated data and the distribution
of real data. Thus, combining the GAN model adversarial loss function with traditional loss
functions could be beneficial. For instance, the loss function of the pix2pix model, which is
an extension of the conditional GAN model framework, is modified by adding L1 loss func-
tions, leading to powerful results. In the case of paired training, we investigate the effect of the
loss function by replacing the adversarial loss function with state-of-the-art adversarial losses.
Additionally, we incorporate a new combination of non-adversarial loss functions. Several com-
parisons are performed in order to select the suitable combination of L1 and one of the following
loss functions: structure, gradient, content-based, Kullback–Leibler divergence, and softmax.

4.2. Comparison with State-of-the-art Unpaired Models

Studying the GAN models that have been trained with unpaired datasets is important because
paired training data are not available in certain tasks. One of the most popular GAN models
dealing with the existence of unpaired training datasets is the CycleGAN model. This model is
built on the basis of the pix2pix model, but it removes the paired input dataset and translates the
trained images two times. The dualGAN, discoGAN, and Unsupervised Attention Guided GAN
(uagGAN) models follow the same concept but use different loss functions.

The uagGAN model follows the same architecture of the cycleGAN model but with fur-
ther improvement. It integrates an attention mechanism into unsupervised image synthesis that
significantly improves the generated image quality and produces sharper images than the other
methods. Additionally, this model utilizes the attention-guided discriminator to learn accurate
maps and to focus on the attended content, reflecting where the discriminator looks before eval-
uating whether an image is real or fake.

According to Mejjati et al. [44], the uagGAN model has some limitations in robustness to
shape changes between domains. However, this limitation occurs in some translation tasks but
not all cases. For instance, this limitation will occur when ‘mapping zebras to lions’ because lions
and zebras have differing shapes, whereas this problem will not occur when translating horse to
zebra because the horse and zebra are similar in shape. In our case, the shapes of the CT and
MR images are similar, and the distinction between MR and CT images is in the details within
the image (e.g. MR images have more tissue details than CT). Therefore, the translation between
MR and CT domains with no change in shape will not affect the robustness of the translation
images.

In order to show that the uagGAN model produces sharper images than other unpaired meth-
ods, an image sharpness assessment test was carried out, where it is inspected using the gradient
magnitude. This method is a non-reference metric that is based on a statistical analysis of local
edge gradients. The gradient magnitude is appropriate for evaluating image sharpness, because
the sharpness of an image is linked to the sharpness of its edge. The gradient of an image is
computed by selecting an image region called the focus window with a size of m times n and
then performing Eq. (2) [46].
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Algorithm 1: Paired-unpaired augGAN model with transfer learning
Input: Paired training dataset Pxn, yn, n = 1 . . .N, Unpaired training dataset

Uxm, ym,m = 1 . . . M, pre-trained model
Initialization: Number of training epochs Nepoch; Number of adversarial loss A;
adv-lossf[A]=[WGAN-loss,WGANgp-loss, lsGAN-loss];
nonadv-loss[6]=[L1,Lcontent,LKLD,Lgradient,Lstructure,Lso f tmax]; best-advloss[A]; uagGAN
model generator uagGen=[Gy,Gx]; train data
Output: Generated MR and CT images.
Select an appropriate non-medical pre-trained model to be used as the source domain for

the paired–unpaired uagGAN model.
uagGen=[Gx]
Modify the adversarial loss function:
for i = 1→ A do

adv-loss= adv-lossf[i]
for k = 1→ Nepoch do

for n = 1→ N do
LL1 (xn, yn) =||yn −G(xn)||1
nonadv-loss1 +=adv-loss+LL1 (xn, yn)
Lcontent(xn, yn)= 1

2
∑

i, j(Fi, j(G(xn)) − Fi, j(xn))2

nonadv-loss2 +=adv-loss+Lcontent(xn, yn)+LL1 (xn, yn)
LKLD(xn, yn)=yn ∗ log(yn/G(xn)
nonadv-loss3 +=adv-loss+LKLD(xn, yn)+LL1 (xn, yn)
Lgradient(xn, yn)=

∑
i, j ||yni, j − yni−1, j | − |G(xn)i, j −G(xn)i−1, j| + |yni, j − yni, j−1 | −

|G(xn)i, j −G(xn)i, j−1||

nonadv-loss4 +=adv-loss+Lgradient(xn, yn)+LL1 (xn, yn)
Lstructure(xn, yn)= 1

n
∑

xn,yn
[1 − S S IM(xn, yn)]

nonadv-loss5 +=adv-loss+Lstructure(xn, yn)+LL1 (xn, yn)
Lso f tmax(xn, yn)=log(exp(−yn) + exp(−xn) + exp(−5))
nonadv-loss6 +=adv-loss+Lso f tmax(xn, yn)+LL1 (xn, yn)
θD[i] + = logD(xn, yn) + log(1 − D(yn,G(yn)))

θD= max θD[i]
final-advloss[i] = argmin (nonadv − loss f ), f=1...6

θG= min final-advloss[i]
train data= Pxn, yn

uagGen=[Gy,Gx]
train data= Uxm, ym

Apply to unseen MR and CT images
return synthesized MR and CT images
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S harpnessValue = Maximum
[∣∣∣∣∣∣(1/m)

m∑
j=1

a(i, j)−

(1/m)
m∑

j=1

a(i + 1, j)

∣∣∣∣∣∣
]

i=1....n−1

(2)

4.3. Paired-Unpaired Training with Transfer learning

An unsupervised GAN model is used after changing the network architecture to account for
paired data pre-training. Our model consists of cascade training, for which paired and unpaired
image data are used. The model starts with the paired dataset by disconnecting one generator to
act as a pix2pix model. At this stage, the adversarial loss function will be optimized. This leads
to a more stable training and produces higher quality images.

To realise accurate bidirectional MR-CT image synthesis and tackle the problem of small-
sized paired datasets, transfer learning is used from non-medical data. To select the appropriate
non-medical pre-trained model for our paired–unpaired GAN model, we compare apple2orange,
horse2zebra and lion2 tiger pre-trained models. The horse2zebra and lion2tiger pre-trained mod-
els are used for comparison because the conversion happens by adding lines to the translated im-
age, similar to adding tissue details to CT images when translated from CT-to-MR. Apple2orange
is also used for comparison because MR-CT images have a similar structure with apple-oranges
images, that is, an oval or round shape structure. The selected pre-trained model has been used
as the source domain for our paired–unpaired uagGAN model. After transferring the required
knowledge from the non-medical pre-trained model, the uagGAN model continues to the next
stage for training with unpaired data. As illustrated in Figure 6, the paired-unpaired uagGAN
model employs a built-in attention mechanism that uses Mx for the generator GAB and My for
the generator GBA. In the first stage, the model uses only one attention mask (Mx), while in the
second stage, it uses both Mx and My.

We also use data augmentation as another method to deal with small datasets, and compare
the results to those obtained using the transfer learning concept. WGAN has been used for data
augmentation by generating new realistic medical images. The role of the GAN model in this
case is to generate additional images. We trained WGAN twice: once with real MR images
to generate new MR images and again with real CT images to generate new CT images. As a
result, the training dataset size was increased by the WGAN-generated images. As a result, our
paired-unpaired model will be trained on a larger dataset. The convergence time will be reduced
as a result of transfer learning. Therefore, we compare the amount of time required to train the
model using transfer learning and data augmentation.

5. Experimental Results

5.1. Dataset

We used two real MR-CT datasets during the experiments to demonstrate the capability of
our model. For the paired dataset, we used the dataset provided by Han et al. [47], which includes
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Figure 6: Our proposed paired–unpaired uagGAN model. In the first stage, one of the uagGAN model generators is used,
and generator GBA is disconnected. The uagGAN model acts as a pix2pix model that deals with paired dataset.

367 paired MR-CT brain images from 18 patients. To align each MR/CT pair, the authors used
a mutual information rigid registration algorithm. They re-sampled the CT images to match the
resolution of the MR images, and then corrected the MR images with the N3 bias field correction
algorithm [48]. To standardize image intensities for all patients, the histogram-matched method
[49] was applied to MR images.

For the unpaired dataset, we use our collected MR-CT brain images from the Radiology
Department of the Jordan University Hospital (JUH) that has been collected between the period
of April 2016 and December 2019. Both datasets contain normal and abnormal (i.e. contains
tumors) MR and CT images1.

The JUH dataset has been collected after receiving Institutional Review Board (IRB) approval
of the hospital, and the consent of the patients to take their data. All procedures followed are
consistent with the ethics of handling patients’ data. Our dataset consists of the brain CT and
MR images of 20 patients scanned for radiotherapy treatment planning for brain tumors. The
dataset contains T2-MR and CT images for 20 patients aged between 26-71 years with mean-std
equal to 47-14.07. The MR images of each patient were acquired with a 5.00mm T Siemens
Verio 3T using a T2-weighted without contrast agent, 3 Fat sat pulses (FS), 2500-4000 TR,
20-30 TE, and 90/180 flip angle. The CT images were acquired with Siemens Somatom scanner
with 2.46mGY.cm dose length, 130KV voltage, 113-327 mAs tube current, topogram acquisition
protocol, 64 dual source, one projection, and slice thickness of 7.0mm. Smooth and sharp filters
have been applied to the CT images. The MR scans have a resolution of 0.7×0.6×5 mm3, while
the CT scans have a resolution of 0.6×0.6×7 mm3. There are a total of 840 2D axial image slices

1The JUH dataset can be downloaded from the IEEE DataPort at https://dx.doi.org/10.21227/fe9x-qg64.

https://dx.doi.org/10.21227/fe9x-qg64
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in our final unpaired dataset (420 MR and 420 CT 2D axial image slices).

The final training dataset consists of 267 paired images from 13 patients and 770 unpaired
images (385 MR images and 385 CT images) related to 17 patients (JUH dataset), while testing
is carried out on a separate dataset of 135 images from 8 patients (5 from the paired dataset
and 3 from the JUH dataset). The experiments are performed using 2D image slices that are
extracted using the RadiAnt DICOM viewer software. The extracted images are transformed
to png image data format with a resolution of 256×256 pixels. The model is trained using
Google Colab cloud service, Tensorflow 2.0, python3 framework. All models are trained for 200
epochs with a batch size of 1. Peak-signal-to-noise-ratio (PSNR), Structural Similarity Index
(SSIM), Universal Quality Index (UQI), and Visual Information Fidelity (VIF) have been used
to quantitatively evaluate our model.

5.2. Comparison with State-of-the-art Unpaired Models

In the case of image synthesis, these metrics calculate the amount of distortion in the gener-
ated images. The simplest way to assess image quality is to calculate PSNR, but PSNR does not
always correlate with human visual perception and image quality. Additional parameters were
recommended to resolve the constraint of PSNR metrics, that is, SSIM. The performance of our
model was evaluated on the above-mentioned datasets using PSNR[50] [51], SSIM[52], UQI
[53], and VIF [54].

For the first set of experiments, we compare the state-of-the-art unpaired GAN models in-
cluding cycleGAN, discoGAN, dualGAN, comboGAN, UNIT, and uagGAN models. Figure 7
shows the MR-to-CT and CT-to-MR translations. Table 1 shows the PSNR, SSIM, UQI, and VIF
results of the bidirectional MR-CT synthesis (MR-to-CT and CT-to-MR translation) for the four
selected unpaired models. All of these models have been trained by an end-to-end fashion for
200 epochs. For both MR-to-CT and CT-to-MR translations, the uagGAN model outperforms
the other approaches. It results in the best score across the large majority of the chosen met-
rics: higher PSNR, SSIM, UQI, and VIF in the case of MR-to-CT translation; higher PSNR,
SSIM and VIF in the case of CT-to-MR translation. The values of std are considered low for the
majority of the metrics, indicating the stability of the results.

Figure 7: Bidirectional MR-CT translation results of unpaired models (a) input, (b) ground truth, (c) cycleGAN, (d)
dualGAN, (e) discoGAN, and (f) uagGAN, respectively.

Table 2 shows the sharpness of the generated images of these unpaired models. The uag-
GAN framework results in an increased sharpness of the translated images as well as a notable
improvement of the quantitative metrics compared to the other models.



Alaa Abu-Srhan et al. / Computers in Biology and Medicine Volume , 2021, 00 (2021) 1–27 15

Table 1: Image quality evaluation metrics for unpaired GAN models

MR-to-CT
GAN model PSNR SSIM UQI VIF

Mean (Std) Mean (Std) Mean (Std) Mean (Std)
CycleGAN 25.404 1.648 0.554 0.052 0.779 0.021 0.361 0.070
DualGAN 21.880 2.607 0.541 0.053 0.688 0.038 0.234 0.103
DiscoGAN 24.675 2.136 0.553 0.042 0.743 0.034 0.067 0.017
ComboGAN 21.219 2.143 0.453 0.056 0.676 0.074 0.221 0.058
UNIT 25.572 1.821 0.573 0.040 0.718 0.046 0.370 0.069
UagGAN 27.599 1.769 0.595 0.043 0.781 0.042 0.387 0.073

CT-to-MR
CycleGAN 30.529 2.318 0.529 0.058 0.607 0.083 0.049 0.012
DualGAN 27.292 1.715 0.360 0.044 0.360 0.046 0.121 0.052
DiscoGAN 28.316 3.494 0.393 0.083 0.612 0.074 0.040 0.032
ComboGAN 30.320 2.301 0.382 0.060 0.462 0.072 0.042 0.039
UNIT 30.701 1.435 0.539 0.021 0.602 0.097 0.072 0.033
UagGAN 31.049 1.306 0.542 0.051 0.543 0.084 0.178 0.029

Table 2: The sharpness of the generated images of unpaired GAN models

UagGAN CycleGAN DualGAN DiscoGAN ComboGAN UNIT
MR 0.925 0.915 0.907 0.918 0.902 0.911
CT 1.087 1.077 1.068 1.015 1.017 1.063

5.3. Loss Functions Performance Analysis

The second set of experiments determines the best loss function to be used in the cGAN
paired model. The modified model will then be used as the first phase of our paired–unpaired
uagGAN model. We start with replacing the cGAN and pix2pix (cGAN ‖ LL1) adversarial loss
with the adversarial loss of the state-of-the-art GAN models, namely, WGAN, WGAN-GP and
lsGAN. We want to show which adversarial loss is the most suitable for cGAN and pix2pix
architecture. Table 3 shows the PSNR, SSIM, UQI, and VIF results of a different cGAN model
evaluation on MR-CT dataset. We find that adding L1 loss function to the cGAN model produces
better performance, regardless of the used adversarial loss. The results show that {WGAN ‖ LL1}

and {lsGAN ‖ LL1} are among the best adversarial loss functions, as they have the highest mean
value and lowest std value for all evaluation metrics.

We are going further in our experiments by adding non adversarial loss functions to the cGAN
and the pix2pix models. Table 4 shows the image evaluation metrics (PSNR, SSIM, UQI, and
VIF) results after adding non-adversiral loss functions to the cGAN and pix2pix adversarial loss.
The results show that adding L1 to any of the used non-adversarial loss functions gives better
results. For instance, SSIM loss preserves contrast in high-frequency regions. On the other hand,
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Table 3: Image quality evaluation metrics for paired GAN models

GAN model PSNR SSIM UQI VIF
Mean (Std) Mean (Std) Mean (Std) Mean (Std)

cGAN 30.234 3.948 0.668 0.067 0.854 0.045 0.573 0.123
WGAN 29.047 2.364 0.626 0.035 0.759 0.020 0.508 0.088
WGAN-GP 27.054 5.522 0.619 0.085 0.841 0.039 0.523 0.119
lsGAN 28.096 3.447 0.651 0.064 0.838 0.046 0.514 0.119

adding LL1 (pix2pix)
cGAN ‖ LL1 (pix2pix) 31.159 2.929 0.697 0.056 0.877 0.037 0.603 0.073
WGAN ‖ LL1 31.560 2.629 0.724 0.047 0.887 0.028 0.633 0.077
WGAN-GP ‖ LL1 26.776 5.225 0.627 0.081 0.838 0.041 0.535 0.105
lsGAN ‖ LL1 32.913 2.571 0.739 0.049 0.896 0.025 0.687 0.072

Bold indicates the highest two metric scores.

L1 maintains low-frequency. This indicates that the combination of SSIM and L1 loss functions
produces better results than using SSIM alone. In addition, adding a non-adversarial loss function
to the pix2pix model produces better results than using L1 alone.

Table 4: Image quality evaluation metrics for cGAN and pix2pix after adding non-adversarial loss function to the gener-
ator network.

GAN model PSNR SSIM UQI VIF
Mean (Std) Mean (Std) Mean (Std) Mean (Std)

cGAN 30.234 3.948 0.668 0.067 0.854 0.045 0.573 0.123
cGAN +Lgradient 29.676 3.351 0.668 0.079 00.851 0.049 0.567 0.143
cGAN +LKLD 27.809 2.726 0.640 0.065 0.836 0.042 0.497 0.085
cGAN +Lso f tmax 28.815 3.337 0.648 0.070 0.833 0.055 0.536 0.137
cGAN +Lcontent 30.904 2.872 0.641 0.063 0.893 0.054 0.657 0.093
cGAN +Lstructural 29.007 2.991 0.642 0.061 0.871 0.055 0.588 0.097

cGAN+ LL1 (pix2pix)
pix2pix 31.159 2.929 0.697 0.056 0.877 0.037 0.603 0.073
pix2pix+Lgradient 31.591 3.774 0.697 0.068 0.879 0.044 0.637 0.095
pix2pix+LKLD 31.047 2.708 0.700 0.056 0.874 0.032 0.627 0.098
pix2pix+ Lso f tmax 30.745 3.407 0.689 0.059 0.866 0.044 0.671 0.625
pix2pix+Lcontent 31.332 2.859 0.789 0.061 0.891 0.036 0.623 0.093
pix2pix+Lstructural 30.497 2.842 0.715 0.059 0.882 0.029 0.612 0.874

We proceed by adding the traditional loss functions apart from the L1 loss function to the
lsGAN and WGAN models. One loss function is added at a time. Then, we compare the results
to determine the best one. Table 5 shows the PSNR, SSIM, UQI, and VIF results for these
models. The results show that the best loss function for the paired GAN model is {WGAN ‖
Lcontent ‖ L1}. It has the best values for all evaluation metrics. Output samples are blurred and
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lack a high-frequency structure that uses L1 loss function on its own, while content loss offers the
training stability required for convergence. Content loss is used to detect the features in images,
which allows the loss function to know what features are in the target ground truth image rather
than merely comparing pixel differences. This process allows the model being trained with this
loss function to produce a much finer detail of the generated features and outputs.

Table 5: Image quality evaluation metrics after multi-loss functions combination

lsGAN
GAN model PSNR SSIM UQI VIF

Mean (Std) Mean (Std) Mean (Std) Mean (Std)
lsGAN ‖ L1 32.913 2.571 0.739 0.049 0.896 0.025 0.687 0.072
lsGAN ‖ Lgradient ‖ L1 33.005 2.388 0.739 0.046 0.892 0.022 0.649 0.076
lsGAN ‖ LKLD ‖ L1 33.005 3.357 0.727 0.049 0.885 0.036 0.668 0.092
lsGAN ‖ Lso f tmax ‖ L1 31.596 3.115 0.732 0.049 0.888 0.034 0.642 0.084
lsGAN ‖ Lcontent ‖ L1 33.014 2.532 0.742 0.039 0.901 0.029 0.696 0.079
lsGAN ‖Lstructural ‖ L1 32.024 3.235 0.733 0.050 0.887 0.033 0.667 0.101

WGAN
WGAN ‖L1 31.560 2.629 0.724 0.047 0.887 0.028 0.633 0.077
WGAN ‖Lgradient ‖L1 32.429 2.281 0.736 0.038 0.894 0.023 0.671 0.066
WGAN ‖ LKLD ‖ L1 32.114 2.989 0.734 0.046 0.889 0.028 0.654 0.091
WGAN ‖ Lso f tmax ‖ L1 31.376 2.969 0.726 0.048 0.882 0.032 0.635 0.085
WGAN ‖ Lcontent ‖ L1 33.225 2.280 0.756 0.038 0.904 0.022 0.700 0.089
WGAN ‖ Lstructural ‖ L1 32.233 3.496 0.725 0.040 0.885 0.037 0.672 0.067

5.4. Paired-Unpaired Training

The uagGAN model is the best unpaired model according to the comparison with the state-
of-the-art unpaired model. To add supervision behavior to the uagGAN model, we modify its
architecture to train it with both paired and unpaid datasets. This model starts training with
paired dataset, consequently inducing the uagGAN model to act as pix2pix in this stage, but the
loss function is changed to {WGAN ‖ Lcontent ‖ L1}. The model continues training with unpaired
dataset. Therefore, we obtain a new uagGAN model which deals with both paired and unpaired
datasets. We compare the paired–unpaired cycleGAN to the paired–unpaired uagGAN model
to ensure that using the uagGAN is appropriate as a paired–unpaired model. Both models have
been trained in our dataset for 200 epochs. The results of MR-to-CT and CT-to-MR are shown
in Figure 8. Table 6 shows the PSNR, SSIM, UQI, and VIF results of uagGAN and cycleGAN
models trained on paired–unpaired dataset.

The results show that our proposed paired–unpaired uagGAN model outperforms the paired–
unpaired cycleGAN model because it has the highest and stable evaluation values for all the
evaluation metrics. The results also show that synthesised images have higher quality with paired
and unpaired data than when using a single type of data on its own. Owing to the limited size
of the training dataset, the results remain unreliable. Several details do not appear in translated
images in both MR-to-CT and CT-to-MR. The generated CT and MR images lose anatomical
information in areas of soft brain tissue and contain artefacts in areas with bony structures.
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Table 6: Image quality evaluation metrics for paired–unpaired cycleGAN and paired–unpaired uagGAN models

MR-to-CT
Model PSNR SSIM UQI VIF

Mean (Std) Mean (Std) Mean (Std) Mean (Std)
Unpaired Results

cycleGAN 25.404 1.648 0.554 0.052 0.779 0.021 0.361 0.070
uagGAN 27.599 1.769 0.595 0.043 0.781 0.042 0.387 0.073

Paired-Unpaired Results
cycleGAN 32.928 4.023 0.692 0.068 0.812 0.091 0.411 0.091
uagGAN 34.786 2.362 0.739 0.060 0.813 0.053 0.482 0.097

CT-to-MR
Unpaired Results

cycleGAN 30.529 2.318 0.529 0.058 0.607 0.083 0.049 0.012
uagGAN 31.049 1.306 0.542 0.051 0.543 0.084 0.178 0.029

Paired-Unpaired Results
cycleGAN 30.121 1.769 0.512 0.049 0.535 0.052 0.148 0.051
uagGAN 31.821 2.451 0.603 0.065 0.631 0.106 0.187 0.094

Figure 8: MR-to-CT translation results of paired–unpaired cycleGAN and uagGAN models (a) input, (b) ground truth,
(c) cycleGAN, and (d) uagGAN, respectively.
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Any GAN model must be trained with a large number of images to generate realistic images,
as the training stability in terms of the generative loss increases when using more training data.
We perform an experiment to show how the number of images affects the quality of the generated
images (Figure 9). The results show that the PSNR value increases with the increase in the
number of images. In addition, using 600 training images or more will produce good generated
images but still need improvement. Therefore, in the next set of experiments, transfer learning is
used to deal with the problem of a small-sized dataset.”

Figure 9: The impact of the number of images on image generation quality.

5.5. Effect of Transfer Learning

The size of paired and unpaired datasets remains small. Therefore, to enhance the quality
of this paired–unpaired model, we proceed by using the transfer learning concept. We use three
uagGAN pre-trained models that were trained with different datasets, as a source model for
our proposed model, which are: Apple2Orange containing 996 apple images and 1020 orange
images, Horse2Zebra with 939 horse and 1177 zebra images, and Lion2Tiger dataset with 916
lion images and 854 tiger images. Figure 10 shows the final results of MR-to-CT and CT-to-
MR syntheses for our paired–unpaired uagGAN model with transfer learning. Table 7 shows the
PSNR, SSIM, UQI, and VIF for our final model with transfer learning. The results show that
the performance of our proposed model has improved for all evaluation metrics when transfer
learning has been used, regardless of the type of pre-trained model used. It also shows that the
best pre-trained model is the apple2orange pre-trained model for both MR-to-CT and CT-to-MR
translation.

To demonstrate the robustness of the proposed model with abnormal cases, Figure 11 shows
the result of image synthesis for four different cases with tumors of varying sizes. The results are



Alaa Abu-Srhan et al. / Computers in Biology and Medicine Volume , 2021, 00 (2021) 1–27 20

Table 7: Image quality evaluation metrics for paired-unpaired uagGAN model with transfer learning

MR-to-CT
Model PSNR SSIM UQI VIF

Mean (Std) Mean (Std) Mean (Std) Mean (Std)
Training from Scratch

Paired-Unpaired UagGAN 34.786 2.362 0.739 0.060 0.813 0.053 0.482 0.097
Transfer Learning

Pre-trained Dataset
Apple2orange 68.105 2.413 0.953 0.023 0.892 0.008 0.899 0.047
Horse2zebra 57.681 2.968 0.888 0.085 0.817 0.082 0.826 0.098
Lion2tiger 38.438 1.079 0.856 0.008 0.756 0.040 0.358 0.015

CT-to-MR
Training from Scratch

Paired-Unpaired uagGAN 31.821 2.451 0.603 0.065 0.631 0.106 0.187 0.094
Transfer Learning

Pre-trained Dataset
Apple2orange 57.969 4.803 0.943 0.028 0.958 0.035 0.699 0.083
Horse2zebra 46.890 2.504 0.855 0.024 0.861 0.023 0.556 0.044
Lion2tiger 41.301 1.449 0.858 0.015 0.898 0.013 0.351 0.026

significant even with the existence of tumors in both MR and CT images. The proposed model
can capture the tumor area inside 2D brain slices in both MR and CT images. The tumors’ shape
and size appears spatially correct in translated MR and CT images. Many details appear correctly
despite the appearance of a small amount of artefacts in the generated MR images. The generated
images have a similar global structure as the corresponding ground truth images. Compared to
other rival image-to-image models, the proposed model can be viewed as robust method when
translating images with fine details and complex structures such as MR images.

5.6. Data Augmentation

We also used data augmentation to increase the size of the dataset in order to improve the
quality of the images generated by our paired-unpaired augGAN model. Table 8 shows the
comparison between transfer learning and data augmentation. According to the results, both
methods improved accuracy. It also demonstrates that transfer learning is best suited for dealing
with small-sized problems with the highest evaluation metrics. GAN training takes a significant
amount of time, especially for unpaired GAN models. The time required by each unpaired GAN
model is shown in the Table 9. The results show that the time required to train these models
is close, though cycleGAN requires less time. The model requires 14 hours to train with data
augmentation and 8 hours to train with transfer learning. As a result, using transfer learning leads
to better results in less time.
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Figure 10: Bidirectional MR-CT translation results of paired–unpaired uagGAN model with transfer learning (a) input,
(b) ground truth, (c) apple2orange, (d) horse2zebra, and (e) lion2tiger, respectively.

Figure 11: MR-CT bidirectional translation results of paired–unpaired uagGAN model with transfer learning for abnor-
mal cases, where (a) and (c) are real images, and (b) and (d) are synthesized images.
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Table 8: Comparison between transfer learning and data augmentation

MR-to-CT
Method PSNR SSIM UQI VIF

Mean (Std) Mean (Std) Mean (Std) Mean (Std)
Method
Paired-Unpaired UagGAN 34.786 2.362 0.739 0.060 0.813 0.053 0.482 0.097
Transfer learning 68.105 2.413 0.953 0.023 0.892 0.008 0.899 0.047
Data Augmentation 53.062 3.063 0.882 0.009 0.827 0.010 0.673 0.059

CT-to-MR
Paired-Unpaired uagGAN 31.821 2.451 0.603 0.065 0.631 0.106 0.187 0.094
Transfer earning 57.969 4.803 0.943 0.028 0.958 0.035 0.699 0.083
Data Augmentation 47.816 2.784 0.799 0.025 0.753 0.102 0.537 0.087

Table 9: Training time for unpaired GAN models

Model Time (minutes)
UagGAN 487.44
CycleGAN 484.19
DualGAN 506.16
DiscoGAN 506.24
ComboGAN 491.36
UNIT 489.27

5.7. Perceptual Study and Validation

To evaluate the accuracy of our translated MR and CT images, we present three experienced
radiologists from JUH a group of images containing the translated and ground truth images,
which appear in a randomized order. This study adopts our final model, the uagGAN model,
and the paired–unpaired uagGAN model for MR and CT generated images. Each radiologist
was presented 60 translated images from each model (The above-mentioned three models) in
addition to the 60 ground truth images. The final number of images presented to the radiologists
is 240 MR images and 240 CT images with a resolution of 256 × 256 pixels. The main purpose of
this study is to demonstrate the importance of working with paired and unpaired datasets to train
the GAN model instead of training the model with an unpaired dataset only. Another purpose
is to evaluate the images generated by our paired–unpaired uagGAN with the transfer learning
model, and compare with ground truth images. Radiologists are asked to identify the ground
truth images and use a four-point scoring method (with ‘4’ denoting the most realistic image) to
rate the accuracy of each image.

Table 10 presents the results of the perceptual study evaluated by radiologists for MR-to-
CT and CT-to-MR translations. The final column of this table shows the percentage of images
classified as real by the radiologists over the total number of images. In both MR-to-CT trans-
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lations, using paired and unpaired datasets to train the uagGAN model outperforms the use of
unpaired dataset alone rated with a mean score of 0.91 for the paired–unpaired uagGAN model
than 0.25 achieved by the unpaired uagGAN model in the case of MR-to-CT translation. The
performance of paired–unpaired uagGAN model is also reflected in the CT-to-MR translation,
where this model achieves a mean score of 1.08 compared with 0.39. Additionally, 93.89% of
the generated CT images and 68.89% of the generated MR images by our model successfully
convince the radiologists that they are ground truth images from a real scanner.

Table 10: Results of perceptual study

MR-to-CT
Model Mean Std Real%
Unpaired uagGAN 0.25 0.14 18.89%
Paired-unpaired uagGAN 0.91 0.30 43.75%
Our model* 3.08 0.19 93.89%
Ground truth 3.24 0.21 95.56%

CT-to-MR
Model Mean Std Real%
Unpaired uagGAN 0.39 0.08 25.29%
Paired-unpaired uagGAN 1.08 0.09 40.11%
Our model* 1.64 0.86 68.89%
Ground truth 2.49 0.89 80.95%

* Paired-unpaired uagGAN with transfer learning

We compute the Lin’s concordance correlation coefficients (CCC) for the results of percep-
tual study, which quantifies the agreement between the ground truth images and the generated
images. Table 11 presents the Pearson’s correlation coefficient (ρc) and accuracy (Cβ) for both
MR-to-CT and CT-to-MR translation. The results indicate high or medium correlation between
ground truth and the generated images for all radiologists.

Table 11: The CCC results of perceptual study

GAN model MR-to-CT CT-to-MR
(ρc) (Cβ) (ρc) (Cβ)

Radiologist 1 0.479 0.993 0.663 0.933
Radiologist 2 0.453 0.933 0.636 0.929
Radiologist 3 0.758 0.986 0.592 0.946

6. Discussion

This work proposes a paired–unpaired uagGAN model that has been trained with small-
sized paired and unpaired datasets. A limited number of paired dataset images were integrated
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in a semi-supervised cascaded procedure with unpaired dataset images to train our model. This
procedure overcomes the unpaired training context misalignment problem and alleviates the gen-
eration of blurred images during paired data training.

For this purpose, the best combination of loss functions is optimized on a paired dataset for
fine-tuning network parameters to generate realistic MR and CT brain images. This combina-
tion is used to handle the low and high frequency components of target images. In the supervised
phase of the GAN model, the adversarial loss function is chosen based on procedure that automat-
ically selects the best loss function. The weight parameters of both generator and discriminator
θG, θD are assessed and then the best combination of loss functions are returned. The WGAN
adversarial loss gave best performance among other loss functions. Additionally, since the L1
loss function can handle low-frequency components of the image, and the content loss function
deals with the high-frequency image components, thus the combination of these two functions
can further enhance the WGAN adversarial loss performance. Instead of comparing pixel differ-
ences, the content loss function can give focus to shape and structure features inside the ground
truth image, and works on generating more realistic context details. Also, using a pre-trained
network knowledge decreases the convergence time and improves image quality significantly,
especially when target data is limited.

The definition of the adversarial loss function is a critical aspect in the design of GAN models
because it affects the GAN’s performance and the quality of the results. The WGAN adversar-
ial loss function is selected according to comparison with the state-of-the-art adversarial loss
functions (cGAN, WGAN, WGAN-GP, lsGAN adversarial loss functions). One of the most
important characteristics of WGAN is its ability to continuously estimate the Earth Mover’s
distance by training the discriminator network to achieve the best status. Therefore, using the
WGAN adversarial loss function results in stable training, avoiding the mode collapse problem,
and improving the GAN model’s performance [55] [21].

Preparing a large-size paired dataset is difficult and expensive in the medical domain, there-
fore an unpaired datasets can assist in network training. In the unsupervised phase of our GAN
model, a uagGAN model is used for training the unpaired dataset. The proposed uagGAN
method utilizes the capability of the cycleGAN model in generating images from unpaired data,
in addition to the use of pixel and attention losses. By utilizing a built-in attention mechanism,
the model attention-guided generators produce attention masks for high-quality target images.
Image sharpness is also inspected using the gradient magnitude to measure the capability of gen-
erated fine tissue details of the unpaired models. Results show sharper images as compared to
other methods.

GAN model needs to be trained with a large dataset to generate realistic images. Therefore,
transfer learning from a non-medical data source is used to handle the small-sized paired and
unpaired datasets. This would shorten the convergence time and minimize the effort required for
collecting a suitable number of medical images to train the GAN model. The optimization of the
uagGAN loss function and the use of transfer learning leads to homogeneous and realistic global
structures and fine texture details. The results indicate that our synthetic model can estimate
structures efficiently inside complicated 2D brain slices, such as soft brain vessels, and bones.

Clinical significance was assessed by a perceptual study. Three experienced radiologists per-
formed qualitative evaluation and assessed the reliability of the generated MR and CT images.
The quality of the MR and CT images generated by the augGAN model was rated near to ground
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truth. A subset of the generated images were identified as real (source) images by the partici-
pating radiologists in the study. The reported qualitative results demonstrate the fidelity of the
generated images by our model. Moreover, the results were statistically significant to clinicians,
and may serve as a useful application tool in real-time actual MR and CT scanning scenarios
(e.g. confirming the location of a tumor before surgery when using a single imaging modality).

Despite qualitative and quantitative experiments, the quality of the MR translated images can
be improved as some of the generated images may contain artifacts in the skull region. This
probably happens due to the model attempting to provide much more soft tissue details to the
input CT images to generate the corresponding MR images, our model may incorrectly add more
details to the bone area too. Adding a feature map layer in the MR image generation may assist
with the poorly translated or mistranslated patterns. Additionally, this work is constrained to a
single type of MR images, and performing the bidirectional image translation in 3D volumes can
provide radiologists with better structural information and richer anatomical details.

7. Conclusions and Future Works

The paired–unpaired uagGAN model is a new approach for medical image translation tasks.
The model alleviates the rigid registration task of training using small-size paired data and han-
dles the context misalignment problem of unpaired datasets. In addition, a new combination
of non-adversarial loss functions is incorporated to enhance model consistency and generate
sharper images with higher soft-tissue contrast. Furthermore, knowledge transfer from a non-
medical pre-trained model improved the proposed uagGAN model and achieved better image
translation performance. The experimental results show efficient model performance in MR-to-
CT translation. However, further image enhancement might be required in the case of CT-to-MR
translation. Future works will be deal with 3D multi-channel volumes. We plan to generalize
the model to accommodate other types of MR contrast images, such as T1 and proton density.
Currently, the proposed model is being assessed for automatic tumour segmentation from bidi-
rectional MR-CT generated images.
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