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Abstract 

Medical imaging represents the utilisation of technology in biology for the purpose of noninvasively 

revealing the internal structure of the organs of the human body. It is a way to improve the quality of 

the patient’s life through a more precise and rapid diagnosis, and with limited side-effects, leading to 

an effective overall treatment procedure. The main objective of this thesis is to propose novel tumour 

discrimination techniques that cover both micro and macro-scale textures encountered in computed 

tomography (CT) and digital microscopy (DM) modalities, respectively. Image texture can provide 

significant information on the (ab)normality of tissue, and this thesis expands this idea to tumour 

texture grading and classification. The fractal dimension (FD) as a texture measure was applied to 

contrast enhanced CT lung tumour images in an aim to improve tumour grading accuracy from 

conventional CT modality, and quantitative performance analysis showed an accuracy of 83.30% in 

distinguishing between advanced (aggressive) and early stage (non-aggressive) malignant tumours. A 

different approach was adopted for subtype discrimination of brain tumour DM images via a set of 

statistical and model-based texture analysis algorithms. The combined Gaussian Markov random field 

and run-length matrix texture measures outperformed all other combinations, achieving an overall 

class assignment classification accuracy of 92.50%.  Also two new histopathological multiresolution 

approaches based on applying the FD as the best bases selection for discrete wavelet packet 

transform, and when fused with the Gabor filters’ energy output improved the accuracy to 91.25% and 

95.00%, respectively. While noise is quite common in all medical imaging modalities, the impact of 

noise on the applied texture measures was assessed as well. The developed lung and brain texture 

analysis techniques can improve the physician’s ability to detect and analyse pathologies leading for a 

more reliable diagnosis and treatment of disease.  

 

This work has been cited in [1-3]. 
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Chapter 1 

WHAT IS TEXTURE? 

mage texture is an enormous field of research and is perceived as a fundamental component in 

computer vision. With over a half a century of digital image processing, texture still remains a very 

fertile field of research attracting numerous mathematical algorithms and techniques developed for the 

purpose of improving object surface characterisation. The exploitation of image textural properties 

has led to new opportunities for researchers to solve problems where simulation of human vision for 

automated object recognition was required, taking advantage of the exponential increase in computer 

processing power and storage capacity. This has opened the door wide open for establishing new 

solutions to many problems that were deemed unfeasible and computationally demanding.  

Despite that, texture is regarded as a "fuzzy" concept with no mathematical or comprehensive 

definition agreed upon yet. This may be due to the vague concept that texture may actually hold 

resulting in the many interpretations related to human perception. The Oxford dictionary defines 

texture with three different meanings [4]: “the way a surface, substrate or fabric looks or feels to the 

touch, i.e. whether it is rough, smooth, hard, soft, etc; the way food or drink tastes or appears; the way 

in which a piece of music or literature is constructed, with regard to the way in which its parts are 

combined”. Consequently, we understand the term “texture” is interchangeably used to describe 

various patterns arising from different substrates that interact with our senses. For instance our eye 

deploys its retina cones (photopic vision) and rods (scotopic vision) photoreceptors to convert incident 

light energy into signals carried to the brain by the optic nerve to discern the different patterns in an 

image. Similarly the sensory receptors in our fingers translate the feeling of objects; the 

chemoreceptors in the nose detect different odour molecules in the air; the hair cells in the inner ear 

cochlea convert the sound vibrations; and the receptor cells that form the tongue’s taste buds, all 

transform the different sensations electrically to the brain via the nervous system. Therefore, each 

object we sense would initiate a unique feeling in our brain ranging from pleasant to unpleasant, e.g. 

roughness is usually associated with pain and discomfort, unpleasant smell or bitter taste does not 

promote your appetite, and a squeaking chalk sound on a chalkboard is unlike a singing bird. This 

explains the wide use of texture to describe the feeling in many fields, naming a few, such as in 

music, food, paintings and visual arts, textile fabrics, geology, cosmology and computer animation. In 

this thesis, we are concerned with visually sensed textures in the field of medical imaging and how 

disease alters the tissue structure of healthy tissue, so whenever the word texture is mentioned it refers 

to the appearance of organ tissue in a digital image. 

I 
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After specifying the type of texture that we are concerned with, we can then simply conceive texture 

as the variation or arrangement of elementary elements which jointly compose the surface pattern. For 

any picture element (i.e. pixel) in a digital image 𝐼 𝑥,𝑦 , where 𝑥 and 𝑦 are the spatial coordinates and 

𝐼 is the amplitude representing the intensity at any pair of co-ordinates (𝑥, 𝑦), the elementary elements 

can be composed from virtually one to a set of pixels, and the unique arrangement of the finite set of 

discrete values of  𝑥,𝑦 and 𝐼 characterise the texture, which will give the sense of the surface. 

1.1 Sense of texture 

Sensation in its tactile and non-tactile or visual sense plays a major role in defining this concept. That 

is, we can recognise image texture based on its intrinsic properties either by using our tangible senses, 

such as the direct feeling of an observed object, or intangibly through perception as when viewing an 

object from a distance which will be then translated to a texture feeling in our mind. In either case the 

brain associates previously learnt sensation experiences with the different objects or substance 

properties as colour, surface orientation, luminance or brightness, material nature, etc. For example 

before picking an apple or a kiwi fruit our brain gives us a preconceived idea on the smoothness or 

roughness of the fruit peel surface, and it would be quite odd if the rough kiwi’s peel feel comes to 

our mind when seeing a glossy apple. This is maybe due to using the same neural pathways of actual 

sensation for imaginative sensations.  

The experience of human sensation perception takes into account the amount of variation of pixels in 

an image, in the form of edges, which will assist in determining the type of surface under observation. 

Image edges are recognised when a discontinuity occurs in a gradient across a straight line. Given that 

not all imaging applications have high quality coloured images, hence the orientation, shape and 

density of these texture edges becomes significant in object description; especially when dealing with 

grey scale images where discrimination capability is reduced. These edges assist in differentiating 

texture into deterministic and stochastic textures where the edges in the former occur in an equally 

spaced repetitive pattern unlike the latter being more random. Also two other kinds can be deduced as 

hybrid where the image is composed of mixtures of both deterministic and stochastic textures, and 

fractal having a self-similar deterministic pattern at various scales such as mathematical fractals (e.g. 

Sierpinski triangle, Koch snowflake, etc.), or even having a stochastic self-similar pattern such as 

natural fractals (e.g. tree branching, clouds, mountains, etc.). Depending on the specification of these 

edges, textures can be further categorised into fine, rough and glossy, and their opposites, coarse, 

smooth and matt. However, other words exist which can give a descriptive meaning in our daily life 

according to the material type, as instead of coarse or rough we might use grainy, furrowed, bumpy, 

cracked, fuzzy, prickly; or silky, soft, furry, slippery, slick for fine or smooth. The main difference 

between the previous textures is how image pixels form their spatial relationship to define the edges, 

which takes into account besides the pixels grey levels, the size or number of pixels used to compose 
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the texture’s elementary elements, their directionality or shape, and frequency or separating distance 

in-between showing the rapidity of fluctuation in texture. These sets of properties used to characterise 

a specific texture may not be the same if the same texture was viewed at a different scale, which 

makes all texture types scale dependent except for fractal textures where the zoomed-in view should 

resemble the overall initial texture view. 

To show the level of sophistication that our brain deals with in our daily life and how much texture 

with various patterns can be found in just one glimpse, let’s take a real-world digital image, such as 

the Brighton Royal Pavilion depicted in Fig. 1.1, and see how texture could represent the necessary 

details to understand the context. The difference in texture properties defines the border between the 

palace domes and minarets on one hand and the sky above, and between the green fields in front on 

the other. Also the variation in the texture itself can add more description to the scene, where the sky 

in Fig. 1.1 varies from clear to cloudy and even grainy with the little flying birds to the upper left; a 

similar analogy applies to other objects in the image. All of these texture variations result in different 

textures which gives us the ability to distinguish the objects. In order to show how texture can be 

diverse in a single image, seven distinct textures are selected from Fig. 1.1 for identification. 

Although we can select numerous types of textures depending on which part of the image attracts our 

attention, the most distinct textures were selected for clarity. Table 1.1 lists the selected textures into 

three different categories based on their surface patterns, while Table 1.2 sorts textures in a more 

general way based on their tactility, with the perceived feeling – which was restricted to fine and 

coarse for simplicity – given between brackets. 

      Table 1.1 Texture surface pattern              Table 1.2 Tactility of selected textures 

Deterministic Stochastic Fractal  Tactile Visual 

Stone fence Clouds Tree  Tree (coarse)  Clouds (fine) 

Engraved wall Flying birds      Grass field (fine) Flying birds (coarse) 

Tower wall Grass field     Tower wall (fine)  

     Stone fence (coarse) 

  Engraved wall (coarse) 

 

Real images of tissue – or sometimes called medical – texture, unlike the situation in Fig. 1.1, usually 

have a single pattern as the acquisition modality focuses on a specific area of an organ. The way the 

tissue pattern appears can reflect its healthiness state; yet, unfortunately tissue structure is not 

identical in all image samples and varies from one patient to another, since disease might alter the 

tissue structure unequally. This tissue heterogeneity places tissue patterns commonly in the category 

of stochastic or possibly fractal textures – such as the lung’s tissue structure or the folds of the brain – 

which can exhibit fractal-like characteristics.  



4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1 The Royal Pavilion palace in Brighton.
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5 

 

 

 

 

 

 

Two different examples of the type of fine and coarse tissue that this thesis will deal with are shown in 

Fig. 1.2. The two medical images represent the type of texture encountered when using non-invasive and 

invasive modalities, where Fig. 1.2(a) is a lung tumour region acquired at a micro-scale and Fig. 1.2(b) is 

a brain tumour acquired at a macro-scale. Sometimes fine texture, as the case with lung tissue image, 

might need processing such as transforming to the fractal dimension, which could be necessary to reveal 

subtle lung texture details, whereas prominent elements in the coarse texture of the brain tumour case 

(e.g. cell nuclei) can be segmented and used for tumour subtypes differentiation. As for the tissue 

stochastic texture where it does not usually have a repetitive pattern but homogeneous statistical 

properties, the directionality and density of the discontinuities in the texture’s surface help define the 

tissue (e.g. normal or abnormal); moreover, tissue with a large amount of edges is considered rich with 

features which will make the feature extraction algorithm more capable of delivering a better 

characterisation.  

1.2 Our perception of texture  

Understanding how humans perceive texture was a point of interest for much research in the fields of 

neuroscience, psychophysics and computer science. Being able to detect, classify and segregate scene 

objects in a human vision manner requires identifying how the brain processes visual information, that is, 

how related neural processes respond to various stimuli of different texture patterns. The latter is the main 

(a) (b) 

Fig. 1.2 Real tissue texture (a) extracted lung tumour tissue and its corresponding fractal dimension 

version to reveal structure, and (b) extracted meningioma brain tissue. 
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concern in neuroscience and psychophysics studies, while computer science, or more precisely 

biologically inspired computer science, tends to quantify these visual processes by mathematical 

modelling or capturing the texture properties for automated recognition. 

One of the earliest texture perception studies of human vision was proposed by Julesz, who laid out the 

fundamentals of preattentive vision [5-9].  The concept of texture being “effortlessly or preattentively 

discriminable”, i.e. the spontaneous perception of texture variations without focused attention, is 

illustrated in Fig. 1.3, where the left side area is considered preattentively discriminable while the right 

side is not. Julesz attributed this to the order of image statistics of texture patterns, where textures having 

equal second order statistics (i.e. identical joint distribution of grey level pairs) tend to be not 

preattentively discriminable, as the case between the L-shape background and the T-shape right region of 

Fig. 1.3. This is known as Julesz conjecture which he and his colleagues refuted afterwards using 

carefully constructed textures having equal second order and different third and higher order statistics [6]. 

Nevertheless, this conjecture gave a better understanding of texture perception which led to the proposal 

of the texton theory. The theory states that texture discrimination is achieved by its primitive or 

fundamental elements, named textons [7, 8] or sometimes called texels (stands for texture elements) [10], 

which have conspicuous local features. These textons can be in the form of terminations or endpoints of 

line segments (e.g. closure, connectivity, corners, etc.), elongated blobs (e.g. granularity), or colours. If 

we examine Fig. 1.3 again, preattentive texture perception can be interpreted based upon Julesz’s texton 

theory using first order density, as the difference in the number of texton terminations in each region. 

That is, the number of terminations of the background L-shape and the left region X-shape figures are not 

equal (3 terminations for L against 4 for X); thus we can say that the two textures are preattentively 

discriminable. In contrast there is no difference between the terminations of the T- shapes of the right 

region and the background (i.e. the two regions are indiscriminable).  

While the psychophysiological work of Julesz et al focused on early or low level human visual system 

(HVS) through investigating local texture feature statistics at various orders [9], other researchers showed 

that the HVS has a spatial frequency and orientation sensitivity, performing a multichannel spatial 

frequency filtering on images projected on the retina [11]. Biologically inspired computer vision studies 

made use of the multichannel theory in an endeavour for a more effective approach in analysing and 

segmenting texture in a human-like perception. Implementing computational models via filter banks, as 

the Gabor filter, is one of the well known techniques used in HVS simulation. Kulikowski et al showed 

that the spatial response profile of the simple cells in the visual cortex can be mathematically described by 

a Gabor filter bank [12]. An early example of filter bank application in texture segregation is Turner’s use 

of the Gabor filter for preattentive texture discrimination, showing it can act as a detector for textons, 

such as collinear or elongated segments [13]. Bovik et al used the power spectrum characteristics of 

individual textures for segmentation. Upon empirical information, differences between channel amplitude 

responses were used for detecting boundaries between texture regions. Filter locations were selected 
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using the most significant spectral peak along direction of orientation for strongly oriented textures, while 

the lowest fundamental frequency was used in periodic textures. For non-oriented textures, the centre 

frequency of the two largest maxima was chosen [14]. 

The main motivation of all visual texture perception techniques, whether it relies on characterising texture 

to its statistics or modelling the HVS response using filter banks, aims to learn from how we interestingly 

discern texture to eventually develop more “clever” computer systems. With the various mathematical 

algorithms developed for the purpose of visual automation, a new discipline called texture analysis 

emerged, becoming an essential component in the computer vision problem. 

 

                                             Fig. 1.3 An example of preattentive discrimination [15]. In  

                                                   

 

 

1.3 Texture analysis and its applications 

Texture analysis is the process of extracting meaningful information from the surface of an object(s) 

appearing in an image, where this object could occupy a small region or the whole image. In a typical 

computer vision problem illustrated in Fig. 1.4, texture analysis can be involved in any of the stages 

following the acquisition stage. Image regions having certain textural properties can be delineated as for 

the pre-processing stage, while the feature extraction stage quantitatively captures texture patterns for 

classification, and the cost of prediction errors can be considered in the post-processing stage. The 

efficiency of any texture analysis system is assessed by the accuracy of its quantitative representation to 

classify patterns or identify objects. Accuracy can be improved either by developing an effective feature 

extraction algorithm which can provide high quality features or by designing a powerful classifier that can 

 

the background which is composed of L-shape figures, the 

region to the right having X-shape figures is easily 

distinguishable compared to the region to the right which 

is composed of T-shape figures. 
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deal with nonlinear and high dimensional features, while this thesis is more concerned with the former 

problem. There are four different methods for extracting texture features [16], which differ in the way the 

spatial relationship between the image pixels are observed. Statistical-based methods describe the grey 

level relationship between the image pixels through either first order (single) pixels statistics of 

histograms that do not take into consideration neighbourhood pixel interactions, or second order grey 

level statistics, that define the relationship between the pixels through displacement distance and 

orientation. Model-based methods rely upon capturing the fundamental qualities of the studied texture 

through constructing an image model having certain parameters;  wavelet-based methods give a 

multiresolution interpretation to image texture in analogy similar to the HVS; geometrical-based 

characterises texture in terms of the geometrical properties of its elementary elements (e.g. Voronoi 

tessellation). 

 

 

 

 

 

 

Fig. 1.4 Stages of a typical computer vision system 
 

The extracted texture features can be deployed in many useful applications in computer vision. Major 

applications of texture analysis, such as classification, segmentation, texture synthesis and shape from 

texture [16, 17] are briefly discussed below. 

1.3.1 Classification 

Assessing the performance criteria of the applied feature extraction process requires selecting an 

appropriate classification algorithm or metric (dis)similarity measures. The differentiation between one 

classification method and another resides in their ability to overcome feature nonlinearity in order to 

distinguish the differences between compared texture regions; however, no matter how good the applied 

feature extraction process is if a poor classification design was implemented.  

Classification can be generally implemented in two ways [18]: quantitative performance analysis and 

automated class assignments. The former operates by analysing and then finding differences between the 

feature values of the various texture or cluster regions (e.g. placing a threshold), while in the latter each 

distinctive region is assigned a class and then error estimation (i.e. classification accuracy) is indicated 

from the testing set. 
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Removing a portion of the data set for testing and keeping the remaining for training the classifier is 

known as cross validation. The main objective is to ensure fidelity and replication (i.e. non-randomness) 

of reported classification results when a different sample is investigated. There are several approaches for 

cross validating the classification results, the hold-out method is simply splitting the data set into two 

disjoint training and testing sets; K-fold cross validation method splits the data set into K subsets, for 

which one of the subsets or folds is used for testing and the remaining K-1 are used for training, it can be 

viewed as running the hold-out method K different times; leave-one-out method is the extreme case of the 

K-fold method, in which for a data set of length N, the number of folds K is equal to N; bootstrap method 

randomly generates sample sets of size N by sampling with replacement, unlike the previous methods 

which used sampling without replacement, that is, once a sample is selected the data set for training or 

testing cannot be drawn again. Advantages and disadvantages of each method can be found in [19]. 

1.3.2 Segmentation 

Texture segmentation is similar to the classification problem in the sense of identifying texture from its 

feature values, yet segmentation can be more complex, for which multiple texture regions are present in 

an image (see Fig. 1.5). The task is to search for regions with uniform texture and then correctly label 

them with their relevant classes, taking into account texture boundaries where window samples may 

contain more than one type of texture. Texture segmentation can be divided to supervised and 

unsupervised, as the names state, the number of classes (i.e. prior knowledge of number of textures) in the 

former is assumed beforehand unlike the latter. 

 

 

 

1.3.3 Texture synthesis 

Texture synthesis is a way to generate large textures from a model of a small texture sample, so that the 

synthesised texture would perceptually appear as having the same stochastic characteristics of the initial 

sample but not identical to it. Mainly model-based feature extraction methods such as fractals and 

Markov-Gibbs random fields [17] are used for model generation. Texture synthesis has many applications 

especially in computer graphics, where texture mapping is used to wrap up surfaces and for interactive 

scene rendering.  

Fig. 1.5 Example of segmenting a Nat-5 Brodatz 

image composed of five types of textures using 

co-occurrence features. 
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1.3.4 Shape from texture 

Analysing the various cues appearing in a 2-D image can allow one to infer the 3-D shape of a surface. 

Cues such as the variation of shading on an object surface or viewing the surface from a slant, can give 

inference of the surface shape from the perspective texture gradient. This gradient can be used to compute 

depth information so the surface orientation can be estimated [16]. Shape from texture has many 

applications in automated object recognition as autonomous navigation. 

1.4 Summary  

Image texture remains a challenging field with many efforts exerted to conceptualise this term. The 

various properties that define a certain surface vary from image to image and from one application to 

another, calling for robust approaches to overcome such disparities in object surface display, i.e. that can 

achieve efficient characterisation, and which would make the job of automated object identification easier 

and more effective. Moreover, the heterogeneous nature of medical images – the focus of this thesis – is 

another challenging aspect and would contribute in further increasing the complexity of the examined 

texture. We take this challenge and attempt to provide solutions to some of the problems associated with 

tumour texture classification. 

In this thesis, chapter 2 defines the type of textures encountered in medical images and how to 

characterise it, followed by an overview of the functionalities of the main biomedical imaging modalities 

used in the medical arena, and then background on lung and brain tumours. A survey of the various 

approaches developed for the purpose of identifying and classifying these tumours concludes the chapter. 

Chapter 3 explains how we can increase lung cancer staging accuracy from conventional computed 

tomography images using the fractal dimension, which is followed in chapter 4 by investigating the effect 

of noise on these images when applying seven different texture measures. Chapters 5 and 6 investigate a 

different texture (acquired via microscopy modality) for a different tumour (brain meningioma) from a 

mono and a multiresolution perspective; respectively. Finally, the thesis ends with a concluding 

discussion in chapter 7. 
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Chapter 2 

OVERVIEW OF CT LUNG AND DM BRAIN TUMOUR IMAGING TECHNIQUES 

The various biomedical imaging techniques have a main objective which is to make the patient’s 

diagnosis and treatment faster, easier and more efficient. Operation of these imaging modalities is based 

on incorporating both hardware and software techniques for image acquisition and analysis to address the 

questions of pathology and diagnosis. The hardware part has the responsibility of the invasive or non-

invasive non-destructive interaction with patient’s body and then detecting and measuring the response. 

This happens while patient safety remains the fundamental principle concerning diagnostic procedures, 

and the functions of body organs should remain unaffected or are able to recover while its image is being 

acquired. After the details required for image formation has been captured, the software role emerges to 

arrange this raw information in an understandable format for display. Exploiting the computer’s 

processing power, various mathematical algorithms are applied in this process depending on the function 

of the modality in use. The displayed image can then be further processed using enhancement, 

segmentation and analysis techniques to facilitate decision taking or for automated classification under 

clinician supervision. 

The appearance of body organs in addition to other medical tests, such as biopsy specimens, body fluid 

analysis and measurement of body functions, can be significant for physicians to reach to a decision on 

the medical situation of the patient. The healthiness state in most cases is reflected on the surface, which 

is in analogy to facial expressions where a person can be identified as happy or angry without the need to 

communicate verbally to ask about how he or she feels; similarly, physicians can have an initial idea on 

the (ab)normality of the observed organ from its general appearance via an image captured using a non-

invasive or minimally invasive procedure. Image texture is one of the important cues that could give 

physicians such indication, which would trigger certain treatment procedures, if texture is found 

abnormal, depending on the nature of the disease.  

To avoid diagnosing disease at an advanced stage when it has already progressed and hence patient’s 

prognosis (i.e. prediction of disease course or outcome) becomes poor, early detection of disease can be 

improved by using effective clinical diagnosis systems. While there are numerous studies on lung and 

brain disease detection and evaluation, work in this thesis will focus on tumour disease as it serves as one 

of the primary threats to life. This chapter begins by defining types of texture in the medical environment 

and then describing the various biomedical imaging modalities used for acquisition. Brief medical 

background on the type of tumours dealt with in this work will be given. Finally we conclude with 

coverage of major work done throughout the last decade on lung and brain tumour imaging acquired via 

computed tomography and digital microscopy modalities. 
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2.1 Texture characterisation 

Image texture in biomedical imaging may be characterised at two levels, cellular and tissue, each of 

which represent the biological properties of an organ of interest in a zoomed-in or out fashion. Tissue 

level images, which are basically acquired noninvasively, concentrate on the appearance of the blood 

vessels and other connective tissues resulting in images known to have a micro-scale structure due to the 

fine overall appearance of the texture. In contrast, cellular images are acquired from minimally invasive 

biopsies or blood samples, for which the internal structure of these small specimens is magnified multiple 

times until their molecular properties are revealed. At this zoomed-in level, the cell nuclei become the 

main descriptors of the texture beside other extracellular fluids, and the morphology of the scattered cell 

nuclei, i.e. shape, colour, structure and pattern, and with their relatively large size adds the grainy 

appearance for this type of texture to be defined as having a macro-scale structure. 

2.2 Biomedical imaging modalities 

Different approaches were introduced for the purpose of revealing the hidden structure of the body organs 

with minimal invasiveness. However, patient safety receives priority consideration when designing 

biomedical imaging devices, with the main challenge residing in being able to capture the clearest and 

most descriptive image of an organ with limited side effects.  The study of the organ tissue ranges from 

using minimally invasive mechanical techniques as extracting a small biopsy from the organ tissue to be 

studied ex vivo via a digital microscope (DM), or even using an electron microscope which can magnify 

the structure a thousand times more than that of an ordinary light microscope. Another related method is 

inserting an endoscope into the patient’s body where real-time images are transmitted by a fibre optic 

system, and can be used also for tissue specimen extraction. Alternatively, non-invasive techniques can be 

used for in vivo diagnosis which relies on the interaction of an external signal or internally injected 

substance with the tissue of the organ of interest, and then measuring the power of response emerging 

from that region. This interaction should be within acceptable ranges specified by certain limits of doses 

that a patient should be exposed to. For instance, modalities that employ ionising electromagnetic 

radiation such as radiography or computed tomography record how much attenuation occurs to a focused 

X-ray beam after it has penetrated the scanned region, and the higher the dosage the more the damage 

caused for the tissue, making its recovery very difficult. Also, in nuclear medicine the emitted 

electromagnetic gamma-rays from the nucleus of a radioactive isotope administered intravenously are 

detected by a gamma camera after interaction with the tissue. Other much safer modalities (i.e. which do 

not use ionising radiation) are ultrasound and magnetic resonance imaging, where in the former high 

frequency waves are transmitted and their energy is measured after reflection from different tissue 

densities as they travel inside the body to the designated region, while in the latter the radio frequency 

response of the hydrogen protons in water to the perturbation created by an external applied magnetic 

field is detected.  
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Virtually all non-invasive modalities can be used for comprehensive imaging as they rely on the principle 

of wave energy attenuation as it passes through the body tissue of different densities, yet their 

performance varies due to reasons related either to the properties of the type of focused energy or 

depending on the location and density of the scanned organ. Modalities that use ionising radiation tend to 

have very high energies enabling both X-rays and gamma-rays to penetrate deeply in the human body 

passing through soft or low density tissues, such as lung, kidney…etc., and hard or high density tissues, 

such as bones. For instance, bones appear lighter on the gamma or X-ray projected images since it is very 

dense and absorbs most of the electromagnetic waves compared to the surrounding cartilage and other 

soft tissue. Yet health risks are usually associated with such ionising radiation, constraining their use to 

certain dosage limits and thus cannot be used extensively. On the other hand “safer modalities” such as 

ultrasound are good at soft tissue imaging and can be used with small children and pregnant women, yet it 

suffers from high signal attenuation in air and high density regions, therefore not suitable for imaging 

tissue located behind bones such as brain or lungs. Patients with cardioverter defibrillators and pacemaker 

implants may not be safe for them to undergo a magnetic resonance imaging scan due to the effect of the 

strong magnetic field and radiofrequency pulses generated during the scan. Given the advantage of ease 

and comfort that non-invasive modalities might deliver to the patient during the diagnosis session 

compared to the invasive counterparts; however, high diagnosis accuracies can be achieved with invasive 

techniques and are mainly used for verifying non-invasive results which may be prone to noise and other 

distortions as patient movement. The main imaging modalities used for diagnosis and some for treatment 

as well are listed in Table 2.1 with a brief description of functionality. 

2.3 Tumours  

According to the World Health Organisation malignant tumours or cancer has become the leading cause 

of death worldwide [20], with many efforts being directed towards a better understanding of this disease 

with a hope to make it a completely curable disease.  

Several steps can be followed to tackle this disease; one is the early detection before it starts to spread, 

that can be achieved by improving the efficiency of the biomedical imaging modalities used and 

increasing health awareness among people to recognise early disease signs. Another is suppressing the 

disease itself, as part of preventive medicine, through avoiding factors which can evoke this disease 

leading to a rise in cell changes, and eventually causing tumour growth.  Examples of such risk factors are 

consumption of tobaccos and alcohols [21]; exposure to carcinogenic substances physically such as 

ultraviolet radiation in sunlight and other natural and artificial ionising radiations, or chemically as urban 

air pollution, chemical dyes, asbestos, coal tar, etc.; and we should not forget some of the bad habits  

delivered with modern civilisation as not following a healthy life style – need to eat less meat, more fruit 

and vegetables – and low physical activity, all may contribute in increasing the chance for a tumour to 

develop.  
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Table 2.1 Main biomedical imaging modalities used for disease detection and diagnosis 

Invasiveness Modality type Description 

Invasive 

Microscopy 

 

Light or optical microscopy: The simplest type of microscope based on 

visible light which uses a system of lenses for magnifying biopsy or 

autopsy samples. This type of microscope can be modified to capture 

sample images in a digital format using a charged-coupled device (CCD) 

camera; to be known as digital microscopy. 

Electron microscopy: A type of microscope that uses electron beams 

instead of visible light which is used in ordinary optical microscopes. The 

electrons’ shorter wavelength as compared to visible light rays assists in 

achieving a higher linear magnification and resolving power (i.e. ability to 

distinguish fine details) exceeding one million, which is several hundred 

times the resolving power of an ordinary optical microscope [22]. This 

possibility of observing objects at a molecular level made electronic 

microscopes play an important role in paving the path for new research 

possibilities in biology, chemistry and other related nanotechnology 

sciences. 
 

Endoscopy 

 

A technique used for viewing the internal surface of an organ through the 

insertion of a rigid or flexible tube – containing a light source and lens 

system to visualise and transmit back images via a fibre optic system – 

into the body. Some are also equipped with surgical medical instruments 

to enable the removal of biopsies for external examination. 

Recently a new endoscopic technique, called wireless capsule endoscopy 

(WCE), has been developed which can make the procedure of viewing in-

vivo structures more pleasant and easier for patients [23]. The WCE 

comprises a tiny coloured digital video camera, wireless radiofrequency 

transmitter, light source and a battery which all are implanted inside a 

small pill made of a safe biomaterial and resistant to stomach acids and 

digestive enzymes. This camera can provide a digital movie of the 

patient’s entire intestine so the physician can later examine on his/her 

computer and diagnose.  
 

Non-invasive 

Radiography 

 

Can be defined as the use of an ionising electromagnetic radiation, such as 

X-ray, for imaging internal body structures. Types of radiographic 

imaging [24]:   

Projection X-ray: is the conventional type of X-ray imaging technique 

where static images are captured by projecting the generated X-ray energy 

from the X-ray tube on the body. Nowadays, the analog film is replaced 

by a digital sensor in order for images to be acquired and sent to a 

computer for viewing.  Mainly used for examination of bone fractures. 

Mammography: a type of projection X-ray where a specially designed X-

ray machine projects X-ray beams on very high contrast and high 

resolution digital film for acquiring detailed images of breasts for 

diagnosis.   

Fluoroscopy: an X-ray imaging technique that employs a continuous or a 

pulsing X-ray beam at a lower dose rate of radiation for producing real-

time dynamic images of internal structures. It is used in gastrointestinal 

studies and catheterisation, where a contrast agent (e.g. barium or iodine) 

is administered allowing the physician to see the internal structures of the 

image organ while the contrast agent passes through. 

Computed 

Tomography 

 

Computed tomography or computerised axial tomography (CT/CAT) is a 

cross-sectional improved X-ray technique that produces images of any 

part of the body. A fan of thin X-ray beams are directed over the patient’s 
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body from an X-ray tube mounted on one side of the circular-shape CT 

scanner and received by detectors on the opposite side. As the rotating CT 

scanner frame spins around the patient’s body, multiple profiles are 

recorded and then processed by a computer to construct a series of cross-

sectional images or slices both horizontally and vertically. CT scans 

provide more detailed images compared to conventional X-ray, making it 

suitable to examine many body organs as brain, lungs, liver and kidney. 
 

Magnetic 

Resonance 

 

In MRI, unlike CT, a non-ionising radiation is applied for generating 

cross-sectional images of body soft tissues. Since hydrogen is the most 

abundant atom in the body – nearly two-thirds of the human body consists 

of water – the nuclear magnetic resonance of protons (i.e. nuclei of 

hydrogen atoms) are used to produce proton density images. First a 

magnetic field is focused from the MRI magnet on the body to align the 

protons in a parallel formation, which are then exposed to a strong but 

harmless pulse of radio waves that will scatter back this alignment to the 

initial random pointing position. While the protons spin or align 

themselves back again, they produce a radio signal which will be detected 

by a receiver in the MRI scanner. Finally, based on the strength of the 

received signal – which shows how much hydrogen is present in the 

scanned organ – images are generated by the computer so that the stronger 

the signal the brighter the image, and vice versa. 
 

Ultrasound 

 

Ultrasound (US) – also called sonography – is a noninvasive diagnostic 

medical procedure that uses high frequency sound waves above the human 

hearing range (i.e. greater than 20 kHz) to produce dynamic visual images 

of organs, tissues or blood flow inside the body [25]. The ultrasound 

transducer receives the returning or bouncing back high frequency sound 

waves when transmitted to an area of interest. The transmitted sound wave 

will incur losses to its energy when penetrating the examined organ 

depending on the properties of the medium (e.g. bones have little water as 

compared to tissue). Thus, the variation in attenuation between the organs 

and the surrounding fluid and due to different tissue densities would 

contribute to the pixel intensity levels in the acquired real-time image. US 

can be used to examine many parts of the body, such as the abdomen, 

breasts, prostate, heart and blood vessels and other soft tissue organs. Also 

it is considered safe, inexpensive and portable as compared with other 

imaging modalities [26]. 
 

Nuclear 

medicine 

 

Nuclear medicine (NM) operates in an opposite manner to that of other X-

ray modalities, for which the electromagnetic waves are emitted from 

within the tissue (i.e. internally) and not from an external source. The 

process starts by the patient ingesting or being injected with a nuclear 

material (radiopharmaceutical agent) into the blood stream for creation of 

radioactive tracers to localise in specific body organ systems. These 

tracers accumulate eventually in the organ of interest and give off energy 

in the form of gamma-rays emitted from the nucleus of the unstable 

radioactive atoms. Then a special camera detects these emitted energies 

and digitises them into images by a computer. Applications of NM include 

detection of cancer spread and bone fractures, and evaluation of functions 

of heart, kidneys, lungs, stomach and thyroid. Examples of NM are 

gamma cameras, positron emission tomography (PET) and single photon 

emission tomography (SPECT), where the last two operate similarly to the 

gamma camera but have the advantages of tomography (i.e. slicing) in 
providing 3-D images. 
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Next we define what exactly is a tumour, how does it occur and what are its different types, then 

emphasis is given to lung and meningioma brain tumours which are the focus in this thesis. 

2.3.1 Defining and identifying tumours 

A tumour is recognised as the existence of an abnormal mass of tissue with a capacity for progressive 

growth. It is a term used to describe body cell chaotic growth and divisions occurring in an uncontrollable 

fashion, usually due to cell DNA change or damage [27]. These disorders would affect the life span of the 

cells in when they need to die and when to form new cells (i.e. divide), as a result, these mutated extra 

cells – which consume oxygen, nutrients and occupy space from the healthy cells – would contribute to 

the formation of the tumour tissue. 

Tumours can be classified into two main classes of benign or malignant [28]: 

 Malignant (cancerous) tumours: Cells in these tumours can invade nearby tissues by breaking 

away from a malignant tumor and travelling through the bloodstream or lymphatic system to form 

new tumours in other parts of the body. The spread of cancerous cells from one part of the body 

to another is called metastasis which is a major cause of death from cancer. The site that the cells 

initially spread from is called the primary tumour and the nearby affected site is called the 

secondary or metastatic tumour. Malignant tumours are dealt with surgically followed by 

radiation and chemotherapy to kill any non-spotted remaining malignant cells, or by 

chemotherapy alone if it is difficult to surgically remove the tumours; especially for late stages. 

 Benign (non-cancerous) tumours: Cells in benign tumours would not grow in an unlimited 

manner and do not invade surrounding tissue or spread to other parts of the body (i.e. 

metastasise). Often these can be reduced in size or completely removed without reoccurring again 

and there is usually little threat to life if not removed. 

Essentially, there are as many different types of tumours as there are different types of human cells, just 

over 200 types, with some being very common, while others are extremely rare [29]. Nearly all tumours 

are named after the organ or type of cell that they originate from. For example, the tumours start in lungs 

are called lung tumours, and those that start in skin cells – known as melanocytes – are called melanoma. 

However, tumour types can be grouped into broader categories. The main categories of tumour as 

specified by the U.S. National Cancer Institute [28] are:  

 Carcinoma - begins in the skin or in tissues that line or cover internal organs. 

 Sarcoma - begins in bone, cartilage, fat, muscle, blood vessels, or other connective or supportive 

tissue. 
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 Leukaemia - starts in blood-forming tissue such as the bone marrow and causes large numbers of 

abnormal blood cells to be produced and enter the blood. 

 Lymphoma and myeloma - begin in the cells of the immune system. 

 Central nervous system cancers - begin in the tissues of the brain and spinal cord. 

To prevent diagnosing the disease at advanced stages when the prognosis is poor, it is in the patient and 

physician’s best interest to locate early and specify the type of tumour – benign or malignant – and the 

amount of metastasis which determines the selection of the appropriate treatment procedure. 

2.3.2 Lung tumours 

Lung tumours are the leading cause of death from cancer in both men and women throughout the world 

[30]. They are formed in cells lining air passages, and most lung tumours are found to be malignant [31] 

(i.e. can metastasise to other places). Lung tumours generally do not cause symptoms, especially for early 

stages, and it is usually as a result of the tumour growing – reaching an advanced stage – and causing 

pressure or pain. Also lungs are also considered a common place to metastasise from tumours affecting 

other body organs[32].  

According to the cell size of the tumour from a histopathological specimen viewed with a microscope, 

lung tumours can be divided into two main groups which account for about 95% of all cases [31]: 

 Non-small cell lung cancer (NSCLC): makes up about 75% of all cases and it includes several 

subtypes of tumours, which are: adenocarcinoma, the most common type of lung cancer, making 

up 30% to 40% of all cases; squamous cell carcinoma is the second most common type of lung 

cancer, making up about 30% of all lung cancers; while large cell cancer makes up 10% of all 

cases. Treatment is done by surgery – especially for early stages – or radio/chemical therapy or a 

combination of both. 

 Small cell lung cancer (SCLC): are less common – makes up about 20% of all cases – but they 

grow more quickly and are more likely to metastasise than NSCLC. Often SCLCs have already 

spread to other parts of the body when the cancer is diagnosed, and mainly treated by radiation or 

chemotherapy rather than surgery. 

 About 5% of lung cancers are of rare cell types, such as carcinoid tumour and lymphoma.  

Once the lung tumour is recognised there is a need for the diagnosis to be represented in a 

comprehensible form to all physicians. Staging of lung cancer disease would reduce the variation in the 

reported diagnosis, assist in selecting the appropriate treatment procedure whether it was invasive (e.g. 

surgical) or non-invasive (e.g. radiation or chemotherapy) or a combination of both, and also in 

estimating long-term survivability (i.e. prognosis). The American Joint Committee on Cancer proposed a 
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scheme for NSCLC lung cancer based on the TMN system (see Table 2.2), where the staging scheme was 

revised in 1986 and again in 1997 [33]. 

In brief, the T stands for tumor size and invasiveness and is staged from T1 to T4. Tumours with size less 

than 3 cm are staged as T1, while for greater sizes and if the tumour is grown to the main bronchus it is 

T2. T3 means the tumour has reached the chest wall but it is still operable. T4 tumours have invaded the 

mediastinum – the area and organs between the lungs – which involve the heart, great vessels, trachea or 

esophagus, or because it involves the pleura (i.e. lining of the lung) with accumulation of fluid in the 

surroundings. The N letter stands for the degree of lymph node involvement and is represented from N1 

to N3, and M represents the presence or absence of metastases which is staged as 1 for presence and 0 for 

otherwise. For example, if there was a stage two diagnosed tumor represented as T2N1M0, then it can be 

interpreted as a lung tumour having a size greater than 3 cm, with first degree lymph node involvement 

and no metastasis. 

Table 2.2 Lung tumour staging based on the TNM system 

Stage Size Lymph Metastasis 

Stage IA T1 N0 M0 

Stage IB T2 N0 M0 

Stage IIA T1 N1 M0 

Stage IIB 
T2 N1 M0 

T3 N0 M0 

Stage IIIA 

T1 N2 M0 

T2 N2 M0 

T3 N1 M0 

T3 N2 M0 

Stage IIIB 
Any T N3 M0 

T4 Any N M0 
Stage IV Any T Any N M1 

 

The SCLC is represented by two stages: limited stage where the cancer is found in one lung and adjacent 

tissue, and extensive stage where tumour has spread outside the lung to the chest or has metastasised to 

distant organs. 

In this work we will focus on NSCLCs which make up two-thirds of reported cases with an objective of 

investigating tumour aggressiveness which will assist in differentiating between early and late stage 

tumours. 

2.3.3 Brain tumours 

Although brain tumours are not as common as lung tumours and most of the cases are benign and very 

few are found to be malignant [34], their occurrence is in a very sensitive organ, rendering them very 

serious and maybe life threatening. Moreover, some of the benign tumours may exhibit malignant 

properties (i.e. aggressiveness) if this happen to be located in a sensitive or vital area in the brain. Brain 

tumours can be categorised in two groups [34]: 
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 Primary brain tumours: are benign or malignant tumours which were originally developed in the 

brain tissue. Primary brain tumours can be further subdivided to gliomas, which begin in the glial 

(supportive) tissue, and non-gliomas. The different types of gliomas are astrocytomas, brain stem 

gliomas, ependymomas and oligodendrogliomas. The other types of brain tumours that do not 

begin in the glial tissue are meningiomas, medulloblastomas, schwannomas, craniopharyngiomas 

and germ cell tumours or pineal region tumours. 

 

 Secondary (Metastatic) brain tumours: cancer cells are originally developed outside the brain, 

where it metastasises to the brain via the blood from distant affected organ such as a lung, breast, 

kidney, colon or skin. The incidence of this tumour category is usually higher than that of primary 

brain tumours. 

The grade of a brain tumour refers to its cells’ shape when observed under a microscope. Classification is 

done by grades – from low grade (grade I) to high grade (grade IV). Cells from higher grade tumours are 

more abnormal looking and generally grow faster than cells from lower grade tumours; higher grade 

tumours are more aggressive than lower grade tumours [35]. Treatment of malignant brain tumours is 

often done by radio/chemotherapy, while for some cases, depending on the tumour type and stage, 

surgical removal of the tumour would be a better option [36]. 

Meningioma tumours – the type of tumour dealt with in this thesis – usually occur in adults, with a 

marked female bias represented by a one to three man to women ratio [37]. It also accounts for 27% of all 

primary brain tumours, making it the most common tumour of that type [38]. Meningiomas can have 

three grades, benign, atypical and anaplastic which are numbered from I to III, respectively. Here, we are 

more concerned with classifying different subtypes of meningioma tumours referred to as Grade I, which 

is considered a more difficult task compared to grade differentiation where differences become more 

obvious. An automated meningioma grading system is essential in improving reproducibility by 

overcoming subjective diagnosis due to variability associated with expert’s evaluation. That is, when 

differences become minor between tumour subtypes of the same grade this might trigger for an increase 

in intra-observer variability, i.e. pathologist not being able to give the same reading of the same image at 

more than one occasion, and inter-observer variability, i.e. increase in classification variation between 

different pathologists; and thereby reducing uncertainty that may impact patient outcome. 

A survey of the variety of approaches applied in lung and brain tumour detection and diagnosis acquired 

via CT and DM modalities, respectively, are discussed in the following section. The survey covers major 

work done in this field over the last decade, especially after the increase in computer processing power 

and storage capacity, which facilitated the advent of new mathematical algorithms for developing clinical 

diagnostic systems with better image feature extraction qualities and discrimination capabilities. 
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2.4 CT lung tumour imaging 

Physicians use lung screening for verifying causes of suspected lung disorder symptoms, such as 

coughing, shortness of breath, wheezing, chest pain, swelling in legs and arms, or other signs indicating 

lack of oxygen in the blood (e.g. bluish or purplish discolouration of lips or nail beds) and/or body 

respiratory system failure. Deficiencies in lung functions could be due to several reasons which can take 

several forms, such as [39]: 

 Chronic obstructive pulmonary disease: e.g. emphysema,  

 Interstitial lung disease: e.g. pulmonary fibrosis,  

 Pneumonia: inflammation of lungs caused by bacteria, 

 Pulmonary embolism: blockage of pulmonary artery by foreign matter or blood clot, 

 Cystic fibrosis: inherited disease in secretory glands,  

 Primary pulmonary hypertension: an increase in blood pressure in the pulmonary artery, vein or 

capillaries, 

 Tuberculosis  

 Lung cancer 

 

Different approaches and numerous methods were developed by researchers for the purpose of computer 

aided diagnosis of lung problems. Depending on the type of lung disorder, each of the lung pathologies 

may require a specific approach to follow in order to characterise the disease. Since the focus of this 

thesis is on lung cancer classification, one way is to look for lung nodules – which are round masses of 

tissue in the lungs and can be early signs of cancer – and try to investigate whether they are benign or 

malignant. Also by means of measuring the characteristics of these tumour masses, one can predict their 

aggressive behaviour (i.e. how high is their metabolic activity). Major approaches in lung nodule 

detection and classification are discussed next. 

 

Neural networks and genetic algorithms machine learning techniques were applied in some studies for 

automated detection of pulmonary nodules. Suzuki et al developed a computer aided diagnostic (CAD) 

scheme that uses a massive training artificial neural network (MTANN) – which is a trainable nonlinear 

filter based on an artificial neural network (ANN) – for distinction between benign and malignant lung 

nodules in low-dose helical CT scans [40]. Six parallel arranged expert MTANNs were used to 

differentiate between malignant nodules and six different types of benign nodules. The MTANNs were 

trained with ten typical malignant and ten benign nodules for each of the six types. Training was done 

independently using input CT images and teaching images containing the estimate of the distribution for 

the “likelihood of malignancy”, that is, the teaching image contains a 2-D Gaussian distribution of a 

malignant nodule whereas its peak is located at its centre, and that of the benign has a zero value. Then 

the six MTANNs outputs were combined using an integration ANN in order to provide a value for 
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malignancy assessment, with high values relating to malignant nodules and vice versa to the benign 

nodules. Zhang et al applied a 3-D cellular neural network (CNN) to detect small pulmonary nodules in 

high resolution helical CT scans [41]. Relying on the local shape properties for the purpose of voxel 

classification, local shape differences between nodules and blood vessels were captured using a shape 

index feature. While classification by voxels would allow for coverage of neighbouring information, the 

3-D CNN was trained using genetic algorithm (GA) to deal with the shape index variation pattern of 

nodules. Lee et al combined two template matching methods based on a GA and conventional template 

matching techniques for detection of lung nodules in helical pulmonary CT images [42]. Nodules were 

detected within the lung area by the GA after specifying the target position and selecting the appropriate 

template image from several reference patterns, while the conventional matching template method was 

used to determine lung nodules along the lung wall by rotating semicircular models – serving as reference 

patterns – according to the orientation of the target point on the contour of the lung wall. Then 13 texture 

features were extracted and employed for false-positive (FP) findings elimination. Li et al evaluated 

psychophysical measures’ capability in distinction between benign and malignant lung cancers in low 

dose CT scans [43]. Subjective similarity ratings for benign and malignant nodules were recorded by 10 

radiologists. Then after feature extraction, the performance of four different techniques for determination 

of similarity measures, namely, feature-based pixel value difference-base, cross correlation-based and 

neural network-based techniques were evaluated by correlation with subjective similarity ratings. 

 

Others focused on the geometric and/or morphological shape of the pulmonary nodules. Brown et al used 

a generic CAD system model where baseline scans were employed for detection of candidate lung 

nodules for previously unseen patients [44]. Nodule features such as position, shape and volume would 

serve as baseline results, to be used then for comparison in follow-up scans. Farag et al used four different 

types of deformable templates to describe typical geometry and grey level distribution of lung nodules 

[45]. The four types are: solid spherical models of large size classified and non-classified nodules; hollow 

spherical model of large lung cavity nodules; circular model of small nodules; and semicircular model of 

lung wall nodules. Then the normalised cross correlation template matching by genetic optimisation and 

Bayesian post-classification are combined for nodule detection. Ge et al developed a CAD system that 

detects nodules and reduces FP through extracting 3-D shape information features from VOIs [46]. 3-D 

gradient field features and ellipsoid fitting were designed to distinguish nodules – which have a spherical 

shape – from the elongated shape of blood vessels. Classification was performed using linear discriminant 

analysis with stepwise feature selection, and a receiver operating characteristic (ROC) analysis was used 

to evaluate the FP reduction performance. Paik et al developed a CAD technique using a surface normal 

overlap method for detection of lesions [47]. This technique assumes that lesions such as long nodules 

and colonic polyps tend to have some convex regions on their surface, and thus an intersection might 

occur between the inward pointing surface normal vectors of these features and the tissue. However, the 

type of nodule (benign or malignant) was not investigated. Armato et al applied a ROC analysis to 
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evaluate the performance of a linear discriminant classifier to distinguish between benign and malignant 

nodules in low dose helical CT images [48]. Morphological and grey level features were computed from 

each lung nodule candidate after specifying their locations using grey level thresholding and then fed to 

the classifier.  Some focused on nodule volumetric measurements as a mark of malignancy, such as 

Kostis et al who measured the volumetric growth of small pulmonary nodule over time using 3-D 

methods applied to HRCT images for the purpose of distinguishing malignant from benign nodules [49]. 

3-D intensity and morphology-based segmentation algorithms were developed for four different 

morphologic classes of pulmonary nodules. They showed that 3-D methods for nodule growth estimation 

rate are more accurate that than those based on 2-D measurements. In an extension to Kostis et al work, 

Reeves et al determined the likelihood of malignancy of pulmonary nodules from CT images via 

measuring the growth rate (i.e. change in nodule size) from two successive CT image scans recorded at 

close but different times [50]. Benign nodules have usually a slow growing rate compared to malignant 

nodules, and quantitative volumetric measurements can serve as a predictor of nodule’s possible 

malignancy. The growth rate measurement accuracy was improved by using methods that match two 

images according to density (adaptive thresholding), location (registration), and vessel removal 

consistency (rule-based segmentation). 

 

Clustering techniques were used by Tanino et al using principal component (PC) analysis clustering for 

classification of ground glass opacities – a radiological term to describe hazy opacities within the lungs 

[51]. Suspicious shadows are first classified according to size into two sub-clusters, and then further 

classified into two new sub-clusters according to PC scores, where the last step is iterated recursively. 

Finally the abnormality of suspicious shadows is determined via Mahalanobis discriminant functions. 

Kanazawa et al detected candidates of lung cancer from helical CT images through delineating lung and 

blood vessels regions using fuzzy clustering algorithm [52].  Then features related to shape, grey value 

and position is extracted from each region and certain diagnostic rules were applied for detecting lung 

cancer nodule candidates.  

 

Examples of model-based techniques include the employment of the fractal dimension by Al-Kadi et al 

for improving lung cancer staging prediction accuracy from conventional CT modality [1]. Tumour 

region of interests (ROIs) were extracted from contrast enhanced CT images and quantitative 

performance analysis was used for discriminating between early and late stage tumours. Also strong 

correlation was shown between extracted tumour ROIs FD values and corresponding tumour staging as 

determined by positron emission tomography scan. Takizawa et al used a 3-D Markov random field 

model (MRF) for lung nodule recognition from X-ray CT images [53]. A mathematical morphology filter 

was used for locating suspicious shadow candidates, then volume of interests (VOIs) containing the 

shadows were extracted. A 3-D MRF model is used to evaluate the relationship between the geometrical 

object models (i.e. nodules and blood vessels) after calculating the probabilities of the hypothesis that a 
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certain VOI relates to a nodule or a blood vessel. Moreover, filtering techniques were applied by Arimura 

et al, a difference-image technique for lung nodule enhancement and suppression of normal background 

structure [54]. Using low dose lung cancer CT images, a ring average filter and a matched filter were 

applied to generate a nodule-suppressed image and a nodule-enhanced image, respectively. The 

difference-image would then represent the subtraction of the nodule-suppressed and enhanced images. 

FPs were reduced using rule-based schemes and MTANNs. Li et al developed a selective lung nodule 

enhancement filter for improvement of nodule detection and reduction of FP rate [55]. The aim was to 

simultaneously enhance nodules and suppress other normal anatomic structures such as blood vessels and 

airway walls. Classification was done via an automated rule-based classifier and a case-based four-fold 

cross validation for performance evaluation. 

2.5 DM brain tumour imaging  

For an accurate examination of disease, histopathological biopsies or surgical specimens are examined by 

a pathologist mainly using a light microscope. Although invasive, studies that deal with brain tissue 

images captured via DM modalities can provide a closer view of neuropathologies which otherwise may 

be difficult to discern. Histopathological features might appear generally similar in a sense that all consist 

of cell nuclei immersed in cytoplasm; nevertheless, various discriminating morphological characteristics 

may exist between normal tissues and in between different disease types as well. To capture tissue 

deformations led by disease, the denseness and morphology of the cell nuclei can be an important cue in 

determining the global manifestation of the diseased tissue. Studies that deal with exclusively 

neuropathologies acquired via DM modality will be covered next. 

 

2.5.1 Meningioma-related work 

Lessmann et al employed a self organising map (SOM) – a type of ANN trained using unsupervised 

learning – in order to link the morphological histopathological image characteristics to the space spanned 

by features derived from HSV (hue, saturation and brightness) colour model and wavelet packet (WP) 

transform [56]. For four different subtypes of meningiomas, an average of 79% for the entire data set was 

classified correctly. In another similar study which utilised SOMs for classification of histopathological 

images [57], human observer defined features were used for clustering certain histological characteristics 

on a scale from one to four. Also Wirjadi et al applied a supervised learning method for classification of 

meningioma cells [58], using a decision tree, the most relevant features were selected from a base of grey 

and coloured image features.  

 

Qureshi et al extracted features from four meningioma subtypes using adaptive WP transform and local 

binary patterns (LBP) methods [59]. In the applied WP technique, the most separable or best set of 

subbands are selected by simply measuring the discriminating power between all decomposed subbands 

at a certain level using Hellinger distance. While for the LBP method, the neighbouring pixels for each 



24 

 

 

pixel were thresholded by the value of the central pixel and a binary number was produced, for which first 

order statistics can be derived from its histogram.  After comparing the performance using both methods 

individually and combined, the WP method gave the best results when the extracted features were 

classified via a support vector machine classifier after applying a principal component analysis for 

dimensionality reduction. Also in a similar study the performance of the WP was assessed after deriving 

co-occurrence matrix features from the decomposed subbands, and an improvement in meningioma 

discrimination was claimed in comparison if a WP was not used [60]. Both studies reported a 

classification accuracy of 82.1%; however, 92.5% was achieved using the same histopathological data set 

as shown by [61]. Therein, a combined statistical and model-based approached relying on Gaussian 

Markov random field and run-length matrix was used to capture the textural characteristics, and 

classification was done using a Bayesian classifier after eliminating highly correlated features by a 

correlation thresholding method. 

 

2.5.2 Other types of brain histopathologies 

Demir et al followed a graph-based method – called a cell-graph – for classification of histopathological 

glioma images through probabilistically assigning a link between cell clusters [62]. Cell-graphs are 

generated by calculating the probability of the link between pair of nodes, which correspond to a cell or a 

cell cluster, using the Euclidean distance between node pairs. Edges of the cell-graphs represented by the 

pairwise relation or links between the cells would then be used as topological features for investigation. 

The performance of this method in characterising gliomas gave a better accuracy in comparison with the 

cell-distribution and co-occurrence matrix approaches. The multilayer perception-based neural network 

and with a 30-fold cross validation recorded the highest classification results, with a 92% in 

differentiating malignant glioma from benign (non-neoplastic reactive) tissue. Sertel et al extracted co-

occurrence and LBP features from neuroblastoma images for discrimination into two cases –stroma-rich 

and stroma-poor [63]. A sequential floating forward feature selection method was employed, and the k-

nearest neighbour classifier with a leave-one-out for cross validation was used for performance 

evaluation; reporting an overall accuracy of 88.4%. 

 

Others extracted morphological (e.g. area, roundness and concavity), and first and second order (e.g. 

histogram, and co-occurrence and run-length matrices, respectively) features to quantify astrocytoma 

brain tumours [64]. The degree of malignancy was determined after feeding the extracted features to a 

support vector machine classifier, and when cross validated by a leave-one-out method it gave an 

accuracy of 83.8% and 87.5% for distinguishing low for high grade tumours and grade III from grade IV 

tumours, respectively. In a more recent study, they improved their results by applying a least squares 

mapping technique for reducing the extracted features dimensionality prior to classification, achieving an 

overall performance of 95.2% [65]. However, their research was mainly concerned in differentiating 
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between different astrocytoma tumour grades, while this thesis focuses on discriminating meningioma 

subtypes – a more challenging problem given the minor differences between some subtypes as compared 

to the differences between different grades. 

2.6 Summary  

The main purpose of a CAD system is to provide decision support for physicians in the diagnostic process 

for a better patient prognosis. Thus, various feature extraction and machine learning techniques were 

developed by researchers for characterising diseased tissue relying on its textural appearance, each of 

which focused on how to delineate abnormality with the aim of improving efficiency, ease and speed of 

patient’s diagnosis. Previous work on lung tumour CT images was mainly concerned with nodule 

detection and also in investigating their clinical state, i.e. whether they are benign or malignant. Chapter 3 

in this thesis will take this work a step further by discriminating between malignant tumour stages in 

order to provide a tumour aggression index, which is considered a harder task given the minor differences 

between malignant tumours compared to the differences between malignant vs benign and malignant vs 

normal tissue. Also the study of the effect of noise encountered in CT images on texture measures will be 

discussed in chapter 4. Regarding histopathological meningioma images, most past work on focused on 

tumour grade differentiation, and a few concentrated on subtype differentiation. In chapter 5 and 6 we 

will show that previously reported results on meningioma grade I subtype differentiate can be further 

optimised to higher accuracies by two different novel methods.  
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Chapter 3 

FRACTAL DIMENSION AS A LUNG TUMOUR QUANTITATIVE CLASSIFIER 

 

                                                                  Preview 

This chapter presents the potential for fractal analysis of time sequence contrast enhanced (CE) computed 

tomography (CT) images to differentiate between aggressive and non-aggressive malignant lung tumours 

(i.e. high and low metabolic tumours). The aim is to enhance CT tumour staging prediction accuracy 

through identifying malignant aggressiveness of lung tumours. As branching of blood vessels can be 

considered a fractal process, the research examines vascularised tumour regions which exhibit strong 

fractal characteristics. The analysis is performed after injecting 15 patients with a contrast agent and 

transforming at least 11 time sequence CE CT images from each patient to the fractal dimension and 

determining corresponding lacunarity. The fractal texture features were averaged over the tumour region 

and quantitative classification showed up to 83.3% accuracy in distinction between advanced (aggressive) 

and early stage (non-aggressive) malignant tumours. Also it showed strong correlation with 

corresponding lung tumour stage and standardised tumour uptake value of fluorodeoxyglucose as 

determined by positron emission tomography. These results indicate that fractal analysis of time sequence 

CE CT images of malignant lung tumours could provide additional information about likely tumour 

aggression that could potentially impact on clinical management decisions in choosing the appropriate 

treatment procedure. 

3.1 Introduction 

Computed tomography (CT) is one of the best imaging  techniques for soft tissue imaging behind bone 

structures [66]. A modern multislice CT machine enables the rapid acquisition of precise sets of 

successive images with very high resolution supporting a more confident diagnosis. Multislice CT images 

having millimetre slice thickness and high spatial resolution, with fast acquisition times, minimises 

artefacts due to abdominal movement and enables the clear visualisation of anatomical features and 

structures for the purpose of anatomical texture analysis. Yet, conventional anatomical imaging of lung 

cancers gives little indication as to tumour aggression apart from size (i.e. big is bad) and ground glass 

(i.e. favourable) opacification, while the status of the tumour vasculature is related to tumour aggression 

and survival [67]. Assessment of lesion heterogeneity and/or surface irregularity on CT and chest 

radiographs, including fractal analysis, can distinguish between normal tissue and tumours [68-75]. 

Nevertheless, commercial systems for computer assisted diagnosis of lung nodules are available for lesion 

detection and not for characterisation and identification of aggressiveness through examining image 

texture. 

Texture analysis is concerned with the study of the variation in intensity of image elements (pixel) values 
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acquired under certain conditions. From a medical imaging perspective, physical quantities at scales 

smaller than the scales of interest can be analysed for proper classification [76]. In this research, the 

image intensities are transformed to the fractal dimension (FD) domain for the purpose of texture analysis 

of the fractal features (i.e. fractal analysis). The process of fractal analysis has many applications 

including image compression and segmentation as well as in image processing. Being able to extract 

useful but otherwise hidden information through digitally processing medical images is an important tool 

for physicians to support the accurate diagnosis without the need for biopsies ─ a process that can be 

unpleasant for patients and requires time, effort and incurs additional costs. The ability to predict the type 

of tumour with good accuracy from the image could be very advantageous. 

Many studies have applied fractal analysis for different imaging modalities using different approaches for 

the calculation of FD in cases where expert radiologists may have difficulty identifying features. A 

number of studies reported successful results making use of fractals in texture analysis which are 

summarised in Table 3.1. Most studies were primarily concerned with distinguishing between normal and 

abnormal cases. This research is more concerned with lung tumour classification by determining FD 

feature vectors for regions of interest (ROIs), and using these vectors as predictors for tumour aggression. 

So far, investigation of abnormal cases only (i.e. aggressiveness of malignancies) and classifying them 

according to their aggressiveness and determining how FD relates to real medical key indicators has not 

been investigated before. The aim is to improve tumour stage prediction accuracy and not simply 

differentiating between normal and abnormal tissue. Amongst malignant lesions, the propensity for 

spread of tumour to other organs is variable.  More aggressive lesions are associated with earlier and 

more extensive tumour spread. The extent of spread is described by the tumour stage, with higher stages 

reflecting more extensive disease. The ability of conventional CT to accurately determine the stage of 

lung cancer is limited in comparison to functional imaging techniques such as fluorodeoxyglucose 

positron emission tomography (FDG-PET) [77]. Furthermore, FDG-PET can assess tumour metabolic 

activity which also tends to be greater in aggressive tumours. Therefore, it would be very promising if 

tumour aggression could be determined with good accuracy through examining its texture from CE CT 

images only. 

The FD of a structure provides a measure of its texture complexity. For example, if the pixel intensities in 

a CT image are regarded as the height above a plane, then the intensity surface can be perceived as a 

rugged surface. Fractals deal with structures that are not exactly Euclidean (i.e. “in-between dimensions”) 

giving the potential for a richer description of the examined surface; resembling in analogy the relation of 

fuzzy logic to digital logic. Although the FD alone cannot provide sufficient information to indicate the 

aggression of the tumours, this work extracts vector basis of FDs for tumour ROIs and correlates them 

with other clinical factors, investigating whether the texture complexity could be linked to other factors 

that have already been shown to be capable of predicting the aggression of the examined tumour in its 

early stages. 
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This chapter describes the research as follows. Section 3.2 provides an overview of the notion of fractal 

dimension. Section 3.3 describes the procedures and methodology, followed by experimental results and a 

discussion in sections 3.4 and 3.5, respectively. The chapter ends in section 3.6 with an assessment of the 

findings. 

 

Table 3.1 Some studies which used FD for texture analysis and classification 

Examined organ Researchers Modality Method used 

Lung 

Kido et al & [70] CT 
Fractal feature extraction 

based on DBC 

Uppaluri et al [78] CT 
Using multiple statistics 

with FD 

Liver 

Wu  et al [79] US 
Extracting multi-threshold 

FD vector 

Lee et al [80] US 

Fractal feature vector based 

on M-Band wavelet 

transform 

Breast lesions 

Chen et al [81] US 
Fractal feature extraction 

based on fBm 

Penn et al [82] MR 
Fractal-Interpolation 

Function (FIF) 

Mavroforakis et al 

[83] 
X-ray 

Quantitative approach 

based on advanced 

classifier architectures 

supported by fractal 

analysis 

Blood perfusion 

in tumour tissue 

of canine subject 

 

Craciunescu et al 

[84] 
MR 

FIF for 3-D tumour 

perfusion reconstruction 

 

3.2 Theoretical concepts of fractal dimension 

 

Mathematically, fractals can be defined as a geometrical set whose Hausdorff-Besicovitch dimension 

strictly exceeds the topological dimension [85]. The term fractal was first introduced by Benoit 

Mandelbrot to describe non-Euclidean structures that show self-similarity at different scales. Given that 

most biological and natural features show discontinuities and fragmentation, they tend to have a FD. Also 

most of these natural structures are complex and rarely have an exact Euclidean (smooth) shape so that 

they can be precisely measured. 

 

In Euclidean n-space, a bounded set S can be considered statistically self-similar if S is the union of Nd 

non-overlapping subsets with respect to a scaling factor r, each of which is of the form r(Sn) where the Nd 

and Sn sets are congruent in distribution to S. Thus, the Hausdorff-Besicovitch dimension – which is the 

fractal dimension – of a bounded set S in ℜ𝑛  
is a real number used to characterise the geometric 

complexity of S in the same way as length is used as a measurement tool in the Euclidean (discrete) 

space. Hence the FD can be computed as follows [85]: 
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where Nr is the number of self-similar (invariant) shapes and r is the corresponding scaling factor. 

A mathematical fractal, as the Sierpinski triangle shown in Fig. 3.1, can be self-similar on infinite scales; 

thus, its FD can be easily estimated using (3.1) as:  
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Similarly, the FD for each of the lung tumour ROIs in the time sequence CE CT images can be estimated 

by first computing a multidimensional matrix of Nr defined as Nd(x, y, d), where the first dimension d 

represents the original image after it has been filtered by kernel of scale 2, and the second dimension 

represents the image filtered by kernel of scale 3, and so on until reaching the highest scale j. 
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where M, N are the size of the processed image and d = 1, 2, 3, … , j-1 is the dimension of matrix  

Nd(x, y, d). 

 

Given Nd(x, y, d) which represents the number of boxes necessary to cover the whole image, we perform 

the log operation on all elements of Nd(x, y, d) and the corresponding scaling factor r. One of the 

advantages of the logarithm operation is that it expands the values of the dark pixels in the image while 

Scale 2 Scale 3 Scale 6 Initial 

(Scale1) 

Fig. 3.1 Sierpinski triangle fragmented up to six scales. 
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compressing the higher-brighter-level values; also it compresses the dynamic range of images with large 

variations in pixel values [86]. 

 

After applying the logarithmic operations, each element from each array in Nd(x, y, d) will be saved in a 

new row vector v. That is, the first element in all arrays of Nd(x, y, d) will compose vector v1, and all 

second elements will compose vector v2, and so on as shown in (3.3). This process is depicted in Fig. 3.2. 
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Finally, having the number of boxes required to cover the entire image area Nd(x, y, d) with the scaling 

factor r we can then determine the slope b of the least square linear regression line by computing the sums 

of squares: 
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The slope of the linear regression line gives the FD: 
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  (3.6)      

Actually, most natural and some mathematical self-similar fractals are random, meaning that they scale in 

a statistical fashion. The resemblance between shapes seen at different scales in natural fractals – and 

blood vessels branching in lungs are an example – is usually approximate and are considered to be 

random rather than self-similar. In theory, an examined fractal structure should have invariant self-similar 

fragmented and irregular shapes at all scales of measurement reaching to infinity. Yet, in biological 

structures this could only be true for a finite number of scales, depending on the resolution and depth of 
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the acquired image. Therefore, for each examined natural fractal there is a finite scaling range, such that 

below and above it, the structure becomes smooth (i.e. Euclidean) or completely rough and non self-

similar (i.e. random). 

 

Fig. 3.2 Obtaining an array of row vectors from a multidimensional array Nd (x, y, d). 

In order to differentiate between two textures if their FD value was to be identical even though the two 

textures might not be similar, we need to compute the lacunarity (L) of the FD texture. Lacunarity 

measures the “lumpiness” of the fractal data, providing meta-information about the computed FD values 

in the image. The higher the lacunarity, the more heterogeneous the examined fractal area; and vice versa. 

It is defined in terms of the ratio of the variance over the mean value of the function as in (3.7), where M 

and N are the size of the FD processed image IFD(x, y) [76]. 
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To practically represent how L can further differentiate between two or more texture patterns that may 

exhibit similar FD values, 25 different texture images representing natural patterns were selected from the 

Brodatz album for this purpose (see Fig. 3.3). After transforming each of the patterns in Fg.3.3 to the FD, 
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many of the patterns, although different, had their FD values similar as shown in Table 3.2; therefore, 

computing corresponding L can add another dimension for discrimination between FD-alike textures. For 

example, an FD value of 1.65 was recorded for textures D25, D19, D16, D86, D52, D23 and D47; and 

1.69 for textures D112, D48, D95, D72, D30, D44 and D68; while D12, D62, D92 and D85 textures had a 

FD value of 1.80, thus all can be distinguished from their corresponding L values. 

 

Fig. 3.3 Different texture patterns selected from the Brodatz album (reading from left to right, top to bottom), 

which are, D29, D25, D19, D16, D86, D52, D23, D47, D112, D48, D95, D72, D30, D44, D68, D12, D62, D92, 

D85, D103, D41, D51, D108, D90, D54; respectively. 

 

Table 3.2 Fractal dimension (FD) and its corresponding 

lacunarity (L) for each of the patterns P shown in Fig.3.3 

P FD L P FD L P FD L 

D12 1.80 0.031 D48 1.69 0.145 D92 1.80 0.025 

D16 1.65 0.107 D51 1.88 0.041 D95 1.69 0.082 

D19 1.65 0.053 D52 1.66 0.123 D103 1.14 0.558 

D23 1.66 0.045 D54 1.59 0.068 D108 1.48 0.223 

D25 1.65 0.088 D62 1.80 0.055 D112 1.69 0.077 

D29 1.64 0.083 D68 1.69 0.075    

D30 1.69 0.058 D72 1.69 0.080 

D41 1.71 0.131 D85 1.80 0.050 

D44 1.69 0.174 D86 1.65 0.079 

D47 1.66 0.069 D90 1.76 0.050 
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3.3 Methodology 

The work described in this section is divided into the following phases. The first is the processing phase 

where all sets of sequences of CE CT images ─ in Digital Imaging and Communication in Medicine 

(DICOM) format ─ are acquired for each case and then transformed to FD values for each pixel. The FD 

transformation resulted in images that were considerably enhanced compared to the original images, 

making it easier to extract the tumour ROIs. The edges separating different tissue structures and the 

branching structures of the larger blood vessels become more distinguishable. Then comes the fractal 

analysis phase where the maximum FD average (FDavg) is computed ─ an average FD value for the 

tumour area is calculated for each image in the time series and the maximum was selected ─ with its 

corresponding lacunarity (i.e. the degree of non-homogeneity). The baseline FDavg is also calculated as 

the FD of the tumour in the first image in the sequence of DICOM images once the contrast agent starts to 

diffuse, directly after injection. These values are then correlated with two markers of survival: tumour 

stage and standardised tumour uptake value of FDG as determined by positron emission tomography 

(PET). In a further study, the impact of CT acquisition parameters on FDavg and lacunarity is investigated 

using a phantom structure. 

3.3.1 Image Acquisition 

In the first part, quantitative CE CT
a
 was undertaken on 15 patients’ (10 males and 5 females with age 63 

± 8 years, and having lung cancers greater than 10mm
2 
) incorporated into a conventional CT examination 

performed for clinical tumour-staging. A dynamic sequence of 12 bit/pixel DICOM images of the thorax 

was acquired at the anatomical level containing the largest transverse dimension of the lung tumour. 

50mL of conventional contrast material (Iopamidol, Bracco, Milan) with an iodine concentration of 370 

mg/mL were administered intravenously at 7 mL/sec. Patients were instructed to hold their breath during 

the examination period. Data acquisition started at the time of contrast material injection, and from 1 to 

14 one-second images with a slice-thickness of 10mm (120 kV, 300 mAs) were obtained using a cycle 

time of 3 seconds. The second part of the acquisition process involved that all patients undergo a PET-

FDG scan for acquiring two markers of survival – tumour stage and standardised tumour uptake value of 

FDG – which gives a better prediction of the tumour state. 

Using this approach, we managed to record the change in intensity that the contrast agent contributes as it 

diffuses in the blood vessels, reaching its peak and eventually when it starts to diffuse away. As the blood 

vessels become more apparent, the chaotic nature of the blood vessels in the lungs can be examined more 

easily. Hence, the FD, as it changes during the time when the contrast agent concentration is rising and 

then falling in the tumour, can be compared with different tumour stages. Moreover, the PET-FDG 

markers of survival would justify the accuracy of the applied texture analysis method. 

                                                                 
a Images were provided by the University of Sussex Clinical Imaging Science Centre. 
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3.3.2 FD transformation 

The acquired CE CT images are transformed to FD images using the differential box-counting (DBC) 

algorithm [87-91] at various different scales, then displayed for tumour ROI identification, followed by 

texture analysis. The DBC approach is commonly used when dealing with thousands of data values per 

sample (the images here are all 512 × 512 pixels in size) [92]. In this study, both the DBC and fractional 

Brownian motion (fBm) algorithms (described in chapter 5 in 5.2.4.1 model-based features methods) 

were in fact initially applied to the images, the DBC algorithm was adopted for subsequent analysis as it 

performed faster in the FD calculations of the 512 x 512 CE CT images.  

 

The original DICOM image I(x, y) of size M x N is transformed to a FD image by applying a varying size 

non-linear kernel w(x, y) of size m x n as in (3.8) that operates by block processing on the neighboring 

pixels and finds the difference between the highest (pmax) and lowest (pmin) intensity pixels at positions x 

and y (see Fig. 3.4). The two variables a and b are nonnegative integers which are computed in order to 

centre the kernel w(s, t) on pixel pxy in the original image, where the m and n are nonnegative integers 

which depend on the scaling factor r . The kernel is calculated as in (3.8) and applied as in (3.9). 

 

  1, minmax 






 


r

pp
flooryxw   (3.8) 

 

where r = 2, 3, 4, … , j 

 








 








 


2

1

2

1 n
ceilband

m
ceila  

      
 


a

as

b

bt

d rjtysxItswdyxN
2

,,,,   (3.9) 

 

 

Herein, d = 1, 2, 3 … j-1  is the dimension of matrix Nd(x, y, d) which represents the necessary number of 

boxes to overlay the image. Empirically, the scaling factor r was chosen to be in the range between 2 and 

9. Theoretically, r should represent how much a specific structure of pixels are self similar to its 

surrounding. For the 512 mm x 512 mm CE CT images having a resolution of 12 bits/pixel, Fig. 3.5 

shows that the best scaling is achieved in this range (i.e. correlation between Nd and r is greater than 

0.94). The FD image starts to become blurry due to non-linearity and resolution constraints and if we 

extend the range much further this would certainly change the accuracy of the calculated FD value. 

Similarly choosing a smaller range would result in an insufficient number of surrounding pixels to 

correctly estimate the FD value. Finally, the slope of the linear regression line of Nd(x, y, d) and r would 

represent the FD of that pixel. To further investigate the fractal homogeneity of the lung tumour texture, 

FD lacunarity was also computed. 



35 

 

 

 

Fig. 3.4 Surface of the selected ROI shown in Fig 3.7 displaying the max and min peaks. 

 

 

Fig. 3.5 Scaling factor (r) vs required number of boxes to overlain each image pixel (Nd) in log-log scale. 

 

3.3.3 Region of Interest & Feature extraction 

Having the FD transformed images and under the supervision of a clinical expert, it was comparatively 

easy to select a ROI that lies within the tumour area for all images in the sequence for each patient. The 

ROIs were selected manually as using an automated segmentation procedure could not guarantee the 

texture of the tumour area not to include accidentally some surrounding tissue. Fig. 3.6(a), (b) and (c) 

shows the baseline CT image (slice 1) once the contrast agent starts to diffuse, before and after FD 

transformation. In the upper right side of the left lung in Fig. 3.7(a) it can be seen that the blood vessel 

became very bright as compared to Fig. 3.6(a). This corresponds to the point at which the effect of the 

contrast agent appears to be at its maximum, which varies from one case to another. In this case it reached 

its maximum in the fifth slice. The vascularisation of the tumour − indicated by the lower white arrow − 

can be easily distinguished from the surrounding structure as shown in Fig. 3.7(c). Fig. 3.6(b) and 3.7(b) 
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are the windowed versions (i.e. post-processing by nondestructively changing the CT image contrast and 

brightness) of the original DICOM images with the window width (WW) – which determines the contrast 

of the image – and window grey level (WL) – the image pixel value at the centre of the window – set in 

Hounsfield units for tumours, which are 300 HU and 20 HU, respectively. Then the ROIs are extracted 

for each set (see Fig. 3.8) by first displaying the first image in the set of images and bounding the 

examined area by a polygon. We have to ensure that no surrounding tissue is included in this polygon in 

any of the sequence of images, since respiratory motion may affect the image registration. Subsequently, 

identical ROIs are extracted from all successive slices. Again all ROIs are visually checked for no 

inclusion of nearby boundaries due to patient’s possible respiratory motion (see Fig. 3.9). Finally, the 

average FD is computed for each ROI for each time sequence image for a specific patient and then 

selecting the maximum FDavg which will be correlated with the already-known tumour stage and FDG 

value and the baseline FDavg value representing the first image in the sequence. It should be noted that all 

procedures in this study have received ethical approval. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)     (b)     (c) 

Fig. 3.7 (a) Original maximum contrast image (slice 5), (b) windowed DICOM image (slice 5), and (c) fractally 

transformed maximum contrast image (slice 5). 

 

 

 

  (a)     (b)     (c) 

Fig. 3.6  (a) Original baseline image (slice 1) lower and upper arrows indicating tumour and blood vessel location,    

respectively, (b) windowed DICOM image (slice 1), and (c) fractally transformed baseline image (slice 1).   
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Fig. 3.8 Selected FD tumour ROI enlarged to show texture. 

 

    

    

   

        Fig. 3.9 From left to right − 11 ROIs extracted from 11 successive  

                                         CT images with slice No. 3 giving the highest FDavg. 

 

3.3.4 Impact of CT tube voltage and current on FDavg and Lacunarity 

We need to further investigate what impact the X-ray voltage and tube current parameter might have on 

the calculated FD texture measures from CE CT images. Using a phantom structure, 4 different data sets 

with 10 slices in each and having a fixed 5mm thickness were acquired by varying the voltage and tube 

current for each slice. All 40 slices were processed to get the FDavg and lacunarity features, as shown in 

Table 3.3 for one of the sets. Then each corresponding slice from each set is placed in a separate group, 

each group represents a specific slice number giving us a total of 10 groups with four slices in each. The 

standard deviation for each group was computed to see which group (i.e., slice number acquired 

according to a specific voltage and current value) would represents the least error in calculation of FD 

texture measures. 
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3.4 Experimental results and evaluation 

3.4.1 Fractal Analysis 

Most cases which were diagnosed as aggressive tumours (stage 3 & 4) gave a higher FDavg value as 

compared to the non-aggressive cases (stage 1). For example, results gave a FDavg value of 2.046 for lung 

tumour ROI classified as aggressive (i.e. high metabolic) in Fig. 3.10(a), while Fig. 3.10(b), classified as 

non-aggressive (i.e. low metabolic), gave a much lower FDavg value of 1.534. 

 

As the median is not strongly affected by skewed data as much as the mean, where FD values as low as 

1.5344 can be encountered, the median would be a better option to act as a threshold for the quantitative 

analysis. Hence, the value of 1.913 which is the median of all maximum FDavg values referring to all 15 

cases we analysed would act as a threshold differentiating between aggressive and non-aggressive 

tumours, Table 3.4 shows most aggressive tumours (stages 3 & 4) which are all highly metabolic lie 

above this threshold, with 83.30% of stage four cases above the threshold. This threshold could be used in 

CT scan software systems which would assist the physician in distinguishing between aggressive and 

non-aggressive cases. 

 

 

 

 

 

 

Phantom set 3 

Slice FDavg Lacunarity V (kV) C (mAs) 

1 2.1898 0.0214 80 100 

2 2.1947 0.0199 80 150 

3 2.2090 0.0178 80 200 

4 2.2052 0.0176 80 250 

5 2.2183 0.0161 100 150 

6 2.2182 0.0161 120 100 

7 2.2209 0.0139 120 150 

8 2.2026 0.0134 120 200 

9 2.1883 0.0130 120 250 

10 2.2032 0.0135 140 150 

 

 

 

Table 3.4 Number of cases greater than  

threshold 1.913 

Tumour stage FDavg  > 1.913 

1 0.00% 

2 25.00% 

3 66.67% 

4 83.30% 

 

 

Table 3.3 Slices for phantom group 3 showing 

corresponding CT acquisition parameters (X-ray tube 

voltage (V) & current (C)) for fractal features (FDavg 

& lacunarity) 
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Fig. 3.11 Different sequence of FD ROIs, representing four different stage tumours and four normal, upper 

four sequences are the lung tumour FD ROIs which represents four different stages while the lower 4 

sequences are corresponding normal FD ROIs. 

 

 

 

  (a)                   (b) 

                   Fig. 3.10 (a) Fractally transformed image of early stage non-aggressive lung tumour, 

                   (b) fractally transformed image of advanced stage aggressive lung tumour. 
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Also as shown in Table 3.5 for every tumour stage, the higher the FD, the lower the corresponding 

lacunarity value. This gives some indication that aggressive tumours tend to be more homogeneous. 

Moreover, the average lacunarity over the whole set of image sequence referring to each case correlates 

strongly with FDG (ρ= -0.6273, p=0.0123). Moreover, Fig. 3.11 shows an 11 sequence of eight different 

FD ROIs with the starting slice 1 acting as the baseline image and slice 11 is when the contrast agent has 

completely diffused. These FD ROIs are classified as four normal and four vascularised (i.e. tumour) 

which refer to the four different stages of lung tumours. For each tumour FD ROI a corresponding normal 

region is selected from the normal part of the lung, by this, we have two ROIs from each case. 

It can be seen that non-aggressive tumours (e.g. stage 1) such as the fifth dotted line from down in Fig. 

3.11 tend to have a different range than other tumours ─ upper three lines in Fig. 3.11 ─ where their FDavg 

values are all above 2, with stage 4 ─ first solid line from up ─ achieving the highest FD value. Also, 

normal ROIs were included in the graph for clarification purposes to make sure that their FDavg ranges 

values are completely different to those of the tumour, especially if the baseline or maximum FDavg was 

used for classification. 

3.4.2 Statistical tests 

Using the Spearman rank order correlation test, the tumour baseline FDavg and the maximum FDavg were 

correlated with the corresponding lung tumour stages, giving correlation coefficients of  0.537 and 0.52 

with  a significance level of 0.0387  and 0.0468 for 2-tailed p-value; respectively. Also, using linear 

regression the tumour maximum FDavg and baseline FDavg correlated with tumour uptake of FDG as 

determined by PET, giving ρ= 0.63, p= 0.012 and ρ=0.634, p= 0.011, respectively (see Fig. 3.12). 

A summary of the complete results for all sets of sequences of images corresponding to 15 patients is 

given in Table 3.5. The table shows for each patient the number of slices acquired, tumour stage, area of 

tumour, computed FDG value, the maximum FDavg and its corresponding lacunarity, as well as the 

baseline FDavg and the behavioral direction ∆FD. ∆FD simply represents the difference between the 

minimum and the maximum FDavg rate of change with respect to time. It shows that only two cases from 

all 15 had a positive trend and these cases were classified as early stage. This needs to be further 

investigated through applying this procedure to more cases to see whether ∆FD for early stage tumours in 

time series CE CT images tend to change in a different way. The rates of change with respect to time for 

the FD and its corresponding lacunarity and for all 15 cases are shown in the appendix. 

3.4.3 Phantom tests 

Group 2 for FDavg and group 6 for lacunarity gave the least standard error of the mean as shown in Fig. 

3.13. From Table 3.3, the corresponding voltage and current parameters for FDavg and lacunarity are 80 

kV and 150 mAs and 120 kV and 100 mAs; respectively. 
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3.5 Discussion 

This chapter aims to specify a lung tumour aggression index to assist in better classifying and staging 

lung tumours from CT images without the need for a PET scan. Results show that selecting tumour ROIs 

from slices that have the maximum and baseline FDavg can improve stage prediction. 

 

The presumed reason behind the observation that non-aggressive cancers have a lower maximum FDavg 

value as compared to the aggressive cancers is that given that blood vessels in the lungs appear as fractals, 

the action of administering a contrast agent will enhance the intensity of the blood vessels in the image, as 

we are viewing the image from a FD perspective. We would expect that the FDavg would increase with 

time reaching a maximum at some point near the middle image of the sequence, after the tumour has been 

infused by the contrast agent and before it has started diffusing away. Although this is true for ROIs from 

non-aggressive cancers, as the blood vessels in that region still maintain some of its fractal characteristics, 

in the aggressive tumours, the general shape of the blood vessels has been altered and deformed in such a 

way, becoming very rough, resulting in some increase in the original blood vessels’ fractal characteristics. 

This increase in roughness contributed to the observed maximum FDavg value in these cases as compared 

to the non-aggressive cases. 

 

Regarding the selection of the DBC algorithm, Penn & Loew [93] studied the effectiveness of the DBC 

algorithm and the power spectrum which is based on a fBm algorithm, in performing texture analysis to 

separate classes of blood cell images. They suggest that these approaches may be inaccurate if applied to 

data-limited, low resolution images. We overcame this problem by using high resolution CE CT scans for 

image acquisition. The images that we applied the DBC algorithm to had a resolution of 12 bits per pixel 

– a total of 4096 shades of gray – with no obvious distorting noise, thus reducing possibility of 

miscalculations in the FD computations due to poor resolution. 

 

The DBC algorithm transformed the image to the FD approximately 2.5 times faster than the fBm 

approach, making it more practical for clinical use in order to reduce diagnostic time required by 

physicians for analysing multiple sequences of CT images; therefore it was adopted for subsequent 

analysis. In order to reduce processing time still further, we could have transformed just the ROIs to the 

FD values, and perform the subsequent fractal analysis on this data. However, as the FD transformation is 

a very effective edge enhancer technique [94], we decided to enhance the acquired image first in order to 

help identify the tumour region precisely, ruling out any possible inclusion of any adjacent tissue 

boundaries into the FD tumour calculations. This is especially important as we are working with multiple 

CE CT images acquired over time where the tumour area can change in size and position due to the 

patient's respiratory movements. Hence, we needed to balance the trade-off between choosing the smallest 

possible area size for the whole sequence of CE CT images not including any nearby normal tissue, and 

making sure that the ROI is sufficiently large to obtain an accurate fractal dimension estimate of the 

examined tumour region. 
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Fig. 3.13: Standard deviation of fractal features for groups of similar 

phantom slices acquired under specific voltage (kV) and tube current 

(mAs) CT parameters. 

 

Fig. 3.12 Significant correlation between standard tumour uptake of 

fluorodeoxyglucose with (a) maximum FDavg and (b) baseline FDavg. 
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Table 3.5 FD texture analysis data for all 15 cases 

Patient 
Tumour 

stage 

No. of 

slices 

Area 

(cm
2
) 

FDG maxFDavg Lacunarity 
Baseline 

FDavg 
∆FD 

Case 1  2
b
 11 1.439 4.78  1.7997 (5)

c
 0.0457 1.4937 0.306 

Case 2 4 11 1.072 5.54 1.9214 (1) 0.0275 1.9214 -0.367 

Case 3 4 12 7.533 7.86 1.8330 (1) 0.0450 1.8330 -0.162 

Case 4 3 13 32.982 9.12 2.0341 (1) 0.0201 2.0341 -0.069 

Case 5 4 11 42.123 6.41 2.0061 (2) 0.0268 1.9649 -0.055 

Case 6 1 14 3.555 3.58 1.5344 (6) 0.1333 1.5223 0.012 

Case 7 2 11 11.850 6.33 1.9131 (2) 0.0430 1.9106 -0.181 

Case 8 4 11 19.298 10.36 1.9992 (1) 0.0235 1.9992 -0.216 

Case 9 1 11 3.300 2.8 1.7890 (1) 0.0415 1.7890 -0.254 

Case 10 3 13 12.160 6.44 1.9687 (1) 0.0348 1.9687 -0.178 

Case 11 4 11 28.044 9.75 2.0461 (1) 0.0171 2.0461 -0.152 

Case 12 4 13 5.050 5.82 1.9114 (3) 0.0553 1.8708 -0.311 

Case 13 3 11 3.611 6.26 1.6374 (2) 0.1411 1.5630 -0.122 

Case 14 2 13 26.154 6.35 2.0034 (2) 0.0256 1.9550 -0.087 

Case 15 2 11 6.546 7.83 1.8575 (2) 0.0273 1.8444 -0.222 
                     

 

Additionally, Lee et al [80] used a kernel that calculates the standard deviation multiplied by two inside 

the operating box instead of the difference between the maximum and minimum intensities divided by the 

scaling factor in order to reduce the effect of noise in the acquired images. Although the FD tends to not 

enhance noise since it is a roughness representation of the surface [94], the CE CT images that we 

processed had a high spatial resolution, comparatively free from visible noise. So using the standard 

deviation method on high quality images could result in loss of some relevant information from the 

processed image; it was therefore more appropriate to use the differential method for our case. 

Others used the same modality for texture analysis.  Kido et al [70, 71] and Uppaluri et al [95] showed 

that FD for lung CT images could be useful in differentiating between normal and abnormal lung tissues 

for non-tumour cases. In contrast, our focus was specific to only abnormality trying to differentiate 

between lung tumours upon their aggression. Also, we used time sequence CE CT images to more 

reliably estimate the FD while the previously mentioned two studies operated on ordinary CT images. 

This assisted us in identify to what extent we can extend the range of the scaling factor confidently in the 

DBC algorithm so the computed FD for each pixel would have more fidelity. Furthermore, to assess the 

accuracy of the computed texture measures, we correlated the FDavg values for ROIs with the medical key 

factors, FDG and staging, which were measured using PET. Hence we can better estimate the stage and 

aggression state of the examined tumour from CT images. 

Lacunarity of the FD transformed ROI was measured to further differentiate between ROIs which showed 

similar FD values. Moreover, it was shown that calibrating the CT voltage and tube current parameters 

with the values presented in the experimental results section would assist in calculating the FD texture 

measure more accurately, yet it needs to be verified on real CE CT lung images to check consistency. 

                                                                 
b 1 for early stage while 4 for advanced stage 
c indicates the occurrence in slice number (n) 
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Nevertheless, analysis of tumours of less than 10 mm
2
 in size in this study would have been possible, but 

due to inherent noise resolution of CT would make such analysis unreliable. The results would have been 

improved if CT slice thickness was thinner and the data acquired with a higher resolution (e.g. 16 

bits/pixel). This could have made possible the investigation of tumours having a size smaller than 10 

mm
2
. However, the likelihood of increased noise when acquired images are higher resolution reduces the 

accuracy of the texture estimates. 

3.6 Conclusion 

A fractal analysis of aggressive and non-aggressive lung tumours based on correlation with other related 

key medical factors was proposed in this study. Previous work done was mainly concerned with 

distinguishing normal and abnormal tissue, while this technique assesses the potential for tumour FD 

measurements through CE CT images to provide an indication of tumour aggression. After specifying a 

threshold, most late stage cases resulted in a higher FDavg as compared to the early cases. Moreover, there 

was a significant correlation between tumour stage severity and FDG acquired by PET scan with the 

baseline and maximum value of FDavg occurring in one of the time sequence CE CT images. This implies 

that the FDavg value computed from the tumour ROI could serve as a prognostic marker assisting in 

deciding whether the tumour should be further investigated by a PET scan. 

Usually aggressive cancers are dealt with by non-surgical procedures such as chemotherapy, since 

surgical intervention can provoke the tumour to spread and grow faster. These preliminary results could 

assist physicians in non-invasively investigating the behaviour of the examined lung tumour from time 

sequence CE CT images with no need of biopsy to be taken. It was also shown that through selecting the 

appropriate CT acquisition parameters can play a significant role in improving the computation accuracy 

of the FD. Future work would be studying the effect of CT image reconstruction algorithms on FDavg and 

the possible application of this technique to other imaging modalities (MRI and US) and for other types of 

tumours. 
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Chapter 4 

NOISE IMPACT ON LUNG TUMOUR TEXTURE MEASURES 

Preview 

Seven different texture measurement methods (two wavelet, two model and three statistical-based) were 

applied to investigate their susceptibility to subtle noise caused by acquisition and reconstruction 

deficiencies in medical images. Features of lung tumours were extracted from two different conventional 

and contrast enhanced computed tomography (CT) image data sets under filtered and noisy conditions. 

Noise of Gaussian and Rayleigh distributions with varying mean and variance was encountered in the 

analysed CT images. The Fisher distance was used to differentiate between an original extracted lung 

tumour region of interest (ROI) with the filtered and noisy reconstructed versions. Through examining 

the texture characteristics of the lung tumour areas by the seven different texture measures, it was 

determined that the wavelet packet (WP) and fractal dimension measures were the least affected by 

noise, while the Gaussian Markov random field, run-length and co-occurrence matrices were the most 

affected. Depending on the selected ROI size, it was concluded that texture measures with fewer 

extracted features can decrease susceptibility to noise, with the WP and the Gabor filter having a stable 

performance in both clean and noisy CT versions and for both data sets. The knowledge of the 

robustness of each texture measure under noise presence can assist physicians using an automated lung 

texture classification system in choosing an appropriate feature extraction algorithm for a more accurate 

diagnosis. 

4.1 Introduction 

Texture in medical images can offer an important source of information on the state of the health of an 

examined organ. Diseased tissue usually has a more rough or chaotic structure than the healthy 

counterparts, and this can be characterised quantitatively for an automated diagnostic support system. The 

quality of the extracted texture measures is of significant importance for a correct diagnosis, especially 

when the difference between two different tissues becomes minor. 

Often computed tomography (CT) medical images are degraded by different types and levels of noise, 

which might arise for example, but is not limited to, fluctuations in X-ray photons, low radiation doses, 

instability or deficiencies in the detectors’ electronics receiver system and/or quantisation errors [96]. 

These distortions affecting the fine structure of the examined tissue texture may obscure some prominent 

characteristics that could distinguish one tumour subtype from another, or could decrease the tumour 

staging accuracy, and hence have a negative impact on the overall patient’s prognosis. Therefore, having 

clear and relatively noise-free images plays a significant role in medical image analysis. A number of 
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studies applied various techniques in an endeavour to deal with noise issues in CT images, by reducing 

direct noise and streak artefacts [97-99], or by removing statistical random noise [100-102]. Although all 

denoising techniques report a reduction in measured noise levels and a better visual appearance, a 

complete removal of noise cannot be guaranteed and noise removal might be accompanied with a slight 

deformation or edge blurring of the tissue structure, reducing the differences between the various 

examined tissues. Usually tumour regions occupy a small portion of the acquired CT image, and the 

analysis is constrained to this small region of the diseased tissue for deriving discriminative features; 

whereas additive noise would further complicate the diagnostic process. Hence comes the importance of 

the applied texture measures to effectively characterise the tumour texture and the robustness of their 

performance under noisy conditions (i.e. unfiltered images) or even in cleaned (filtered) images with 

remaining noise residues.    

Physicians tend to use computed texture measures from regions of interest (ROIs) for diagnosis purposes 

and for eventually choosing the appropriate treatment procedure. Many techniques have been applied for 

the purpose of lung texture analysis: such as using the fractal dimension to exploit the fractal nature of the 

lung tissue structure [1, 70, 78], overcomplete wavelet filters ─ also called wavelet frames ─ to 

investigate the tissue at multiple resolutions [103, 104],  combining Gabor filter response with histogram 

features [105], and using the co-occurrence matrix [106]. A review of the various methods used in 

computer analysis of lung CT scans can be found in [107]. However, we need to take into consideration 

when examining the texture of a small ROI in a medical image, that noise could adversely affect the 

accuracy of the measured texture parameters and cause errors in the reported diagnosis [108]. Although 

many studies concerned with noise reduction and CT image enhancement have been undertaken [97-102, 

109], there is still a need to evaluate the texture measures’ feature extraction performance under actual 

noisy conditions. The impact of additive white noise on Gabor filters and co-occurrence matrices, and on 

local power and phase spectra feature extraction ability from ordinary texture images of the Brodatz 

album was studied in [110, 111]; nevertheless, there is limited research in the literature regarding 

evaluating texture measures’ performance under noisy conditions for medical CT images. This chapter 

aims to provide a comparison study between seven different well-known texture measures to investigate 

their susceptibility to noise occurring in CT images, giving an indication of their reliability and fidelity in 

analysing medical images. Main emphasis was given to subtle statistical random noise rather than artefact 

noise which might appear as obvious streaks in the image. Moreover, our intention was to assess the 

performance of the texture features and not the classifier, as it is well-known that the choice of classifier 

influences the classification accuracy for given features. Some features may perform better than others 

only because their distribution is a better fit for the assumptions underlying the classifier model. 
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4.2 Material and methods 

The type of noise needs first to be identified, then two images are generated from each original CT image, 

one with a reduced noise and another with an enhanced noise. These versions are CT reconstructed and 

two new ROIs ─ one from each of the two reconstructed versions ─ are extracted from the tumour area 

(see arrow 1 in Fig. 4.1(a) and (b)) and compared with the original ROI according to seven different 

texture measures. The reason for image reconstruction was to simulate the process of acquiring the CT 

images under noisy conditions, where noise would influence the CT acquisition parameters in the process 

of the CT image generation differently than simply adding it afterwards. The process is summarised in 

Fig. 4.2, and the used procedure is described in detail as follows: 
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Fig. 4.1 Two images selected from a CE CT (case 1) and  a NCE CT (case 5) data sets  are shown in (a) and 

(b), respectively. Arrow 1 shows the selected lung tumour area, and arrow 2 the selected open air region 

below the patient for (a) and  above the patient for (b) which is used for noise estimation. 

Fig. 4.2 Methodology used to assess texture measures’ susceptibility to noise for lung tumour CT images. 
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4.2.1 Image acquisition 

Two different data sets of lungs affected with tumours of varying stages – provided by clinical imaging 

science centre at the University of Sussex – were available for analysis. The first data set which was used 

earlier in our preliminary research [2] and also in chapter 3, was a set of contrast enhanced (CE) CT 

angiography DICOM (Digital Imaging and Communication in Medicine) images referring to 11 patients 

with lung cancers greater than 10 mm
2
 and having a resolution of 12 bits per pixel (bpp). The CE images 

were acquired ─ after injecting a dose of a contrast agent into one of the large veins of each patient ─ 

with an X-ray tube voltage and current of 140 kV and 200 mAs, a 10 mm slice thickness with matrix size 

512 x 512 and B reconstruction filter.  

The second data set consists of conventional or non-contrast enhanced (NCE) CT images of 56 different 

cases of patients also diagnosed with lung cancer. The acquisition parameters of the NCE images were 

similar to the CE data set with the only difference in the resolution and slice thickness, where the NEC 

CT had an improved resolution of 16 bpp and a thinner slice thickness of 2mm. It should be stated that all 

acquisitions were ethically approved, and our work did not influence the diagnostic process or the 

patient’s treatment. 

4.2.2 Noise evaluation 

The original image is first inspected for presence of noise, and the type of noise is appropriately identified 

for removal without destroying the fine structure of the image texture. Two new images are produced 

from this phase, a clean (i.e. filtered original image) and distorted (i.e. the detected noise in the original 

image is doubled) versions. 

4.2.2.1 Noise estimation 

A reasonably constant grey level area in the CT image was selected and checked for uniformity. The 

transverse section of the scanning table in the CT images of the CE data set and the region above the 

scanning gantry for the NCE data set was chosen for analysis (see arrow 2 in Fig. 4.1(a) and (b)), and the 

histogram was plotted for each. Then the mean (μ) and variance (σ
2
) which were estimated from the 

plotted histogram were used to determine the parameters of three other types of noise probability density 

functions (PDFs) for their histograms to be plotted as well (see Table 4.1). The selected noise types for 

this study were Gaussian, Rayleigh and Erlang [86], which are the most commonly encountered in CT 

images. Then the estimated histogram from the CT image will be matched against the generated noise 

PDFs to see to which one it best corresponds. This process was carried out for all 67 images (11 for the 

CE and 56 for the NCE data sets). 
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Table 4.1 PDFs for three different types of noise and their corresponding mean and variance 
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The intensity histograms obtained from the CE CT uniform areas had a shape resembling additive 

Gaussian and  multiplicative Rayleigh noise PDFs with μ and σ
2
 varying between 13.2 to 17.4 and 24.7 to 

65.9; respectively. While the most dominant noise in the NCE CT data set was the Gaussian, with μ and σ 

varying between 7.2 to 25.1 and 7.5 to 86.8; respectively. Matusita distance ─ also known as first order 

Hellinger distance ─ which is invariant to scale in between two probability density distributions was used 

to compare between the original noise (PO) and the three generated noise (PN) distributions to see to 

which the measured noise is least deviated as shown in (4.1).  

    
i

NONO iPiPPPM
2

)()(,   (4.1) 

Fig. 4.3 shows a histogram of noise obtained from one of the CT images compared to three different types 

of generated noise (Gaussian, Rayleigh and Erlang) using the estimated μ and σ
2
. We can see for this case 

that the shape of the Rayleigh noise appears to resemble the CT noise histogram, and the distance 

measure supports this conclusion (see case 3 in Table 4.2). Also in Table 4.2, six of the examined cases 

showed a Rayleigh noise distribution while the rest appeared to have a Gaussian distribution. It has been 

shown that if the standard deviation of the estimated noise is far less than the mean intensity, the noise 

will approach a Gaussian distribution, while if it is far greater than the mean intensity it will have a 

Rayleigh distribution [112]. Additionally, the NCE data set in Table 4.3 shows that the noise in 51 of the 

56 cases was Gaussian, while 2 was Rayleigh and 3 of Erlang type. Nevertheless, the reason not having a 

single noise type in the analysed CT images even though the same CT scanner was used needs to be 

further investigated.  

4.2.2.2 Adaptive filtering  

Having identified the type of noise, we need to clean each of the CT images given the corresponding 

noise variance. As the tumour area is relatively small as compared to the total image size, an adaptive 

filter is needed which can reduce local noise and preserve the edges and fine structures in the CT image 

for subsequent accurate analysis. Since the main focus of this chapter is to compare the extracted texture 

features robustness before and after noise reduction, a simple noise filter was used. An adaptive filter (Sxy) 
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of size 5 x 5 which covers nearly 1% of the image in each step is applied for local noise reduction. Its 

behaviour changes adaptively depending on the statistical characteristics of the region inside the filter as 

defined in the following formula [86]: 

      L

L

c yxIyxIyxf 



 ,,,

2

2

              (4.2) 

Here I(x, y) is the value of the original image suspected to have subtle noise at (x, y); σ
2
η the variance  of 

the noise corrupting fc(x, y) to form I(x, y); μL is the local mean of the pixels in Sxy; and σ
2

L, the local 

variance of the pixels in Sxy. In case of noise absence (i.e. σ
2

η =0) the filter will return the original image. 

Also it preserves the edges in case the local variance is high. If noise and local variances are equal the 

filter returns the arithmetic mean value of the pixels in Sxy.  

In order to study the impact of increased noise on texture analysis measures used in CT images, a 

distorted image fd(x, y) is generated by simply adding the estimated noise η(x, y) ─ which is a by-product 

of the adaptive filtering process ─ to the original image I(x, y), as in (4.3).  

     yxyxIyxf d ,,,        (4.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 From left to right and from top to bottom, histograms with 

𝝁𝒏 = 𝟏𝟑.𝟔𝟗𝟕𝟕, 𝝈𝒏
𝟐 = 𝟒𝟏.𝟏𝟒𝟕𝟐 of transverse section of scanning table 

in CT images followed by corresponding generated Gaussian, Rayleigh 

and Erlang noises; respectively. 
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Table 4.2 Matusita distance between original extracted uniform lung  

tumour ROIs from data set 1 and three types of noise distributions 

CT Image 

ROI 

Generated noise 

Gaussian Rayleigh Erlang 

Case1 0.3091 0.5578 0.6001 

Case2 0.1611 0.5681 0.7889 

Case3 0.5181 0.2855 0.6115 

Case4 0.1646 0.4927 0.9515 

Case5 0.3359 0.5238 0.4315 

Case6 0.3616 0.6888 0.5170 

Case7 0.6601 0.1967 0.5712 

Case8 0.4542 0.3016 0.7447 

Case9 0.6217 0.2311 0.6211 

Case10 0.4069 0.3255 0.7019 

Case11 0.3971 0.3219 0.6046 

   

Table 4.3 Matusita distance between the original extracted uniform lung tumour ROIs from the  

NCE data set and three types of noise distributions 

CT Image 

ROI 

Generated noise CT Image 

ROI 

Generated noise 

Gaussian Rayleigh Erlang Gaussian Rayleigh Erlang 

Case1 0.1310 0.5829 0.3295 Case29 0.1260     0.7726     0.2252 

Case2 0.1196 0.6920 0.2587 Case30 0.2261     0.8018     0.1799 

Case3 0.1641 0.6144 0.2413 Case31 0.1856     0.7318     0.2465 

Case4 0.1054 0.8062 0.1808 Case32 0.1049     0.7425     0.1489 

Case5 0.2917 0.6421 0.4261 Case33 0.0744     0.8057     0.0960 

Case6 0.4858 0.3308 0.5651 Case34 0.0828     0.8229     0.1802 

Case7 0.2667 0.5617 0.5434 Case35 0.1617     0.6089     0.5036 

Case8 0.1128 0.8820 0.2720 Case36 0.1876     0.6488     0.4768 

Case9 0.1166     0.5163     0.2639 Case37 0.1104     0.7509     0.2891 

Case10 0.1278 0.6762 0.3564 Case38 0.1008     0.7061     0.3670 

Case11 0.2089     0.6434     0.3290 Case39 0.2363     0.5937     0.3633 

Case12 0.2577     0.5556     0.3190 Case40 0.2145     0.6355     0.2766 

Case13 0.2285 0.6953 0.3640 Case41 0.0808     0.7709     0.1156 

Case14 0.3079 0.5587 0.3944 Case42 0.2288     0.5809     0.4149 

Case15 0.0696 0.8070 0.1083 Case43 0.2441     0.7554     0.4109 

Case16 0.3398 0.6876 0.1480 Case44 0.1232     0.7209     0.1167 

Case17 0.2639 0.4937 0.4038 Case45 0.0884     0.7855     0.1445 

Case18 0.2287     0.6462     0.4406 Case46 0.1011     0.8567     0.1542 

Case19 0.1987 0.8667 0.2099 Case47 0.1563     0.7811     0.1954 

Case20 0.1197 0.6638 0.3013 Case48 0.2287     0.6227     0.2321 

Case21 0.0499     0.6971     0.2296 Case49 0.4678     0.2707     0.5274 

Case22 0.0913     0.7483     0.2115 Case50 0.1490     0.6771     0.2428 

Case23 0.1533 0.6834 0.1810 Case51 0.3142     0.4813     0.4954 

Case24 0.1004 0.6499 0.2211 Case52 0.1054     0.6101     0.2631 

Case25 0.1057 0.6649 0.2388 Case53 0.1584     0.6709     0.2234 

Case26 0.1390 0.9036 0.1781 Case54 0.1703     0.7428     0.2012 

Case27 0.0732     0.7123     0.1113 Case55 0.3024     0.5964     0.3350 

Case28 0.2416     0.6581     0.3072 Case56 0.1104     0.6800     0.2731 

 

4.2.3 CT image reconstruction 

Instead of using the filtered versions, we intended to simulate the process of acquiring the CT images 

calibrated to the same parameters that were initially used for the original images. As known, the selection 
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of the CT acquisition slice thickness, tube voltage and tube current parameters would influence the final 

appearance of the image; hence simulating the acquisition process under noisy and reduced noise 

conditions would be closer to reality. 

An open-source software package called CTSim [113] was used in the simulation process to reconstruct 

the CT images under noisy and reduced noise conditions. The software simulates the process of collecting 

X-ray data of phantom objects. The intensity of each pixel in the original DICOM CT image was 

considered as a rectangular object of unit distance representing the X-ray attenuation coefficient referring 

to that position.  By the end of this stage, three different CT images represent each case, which are the 

original and two versions acquired under different conditions. The amount of estimated subtle noise 

represented by the difference between the clean and original NCE CT image of Fig. 4.1(b) is shown in 

Fig. 4.4(b). Also a horizontal profile along the middle of the 32 x 32 pixels open air ROI indicated by 

arrow 2 in Fig. 4.1(a) illustrates the difference between the original, clean and noisy CT image versions is 

shown in Fig. 4.5. Texture analysis is then performed first on the 33 CE CT images in the CE data set and 

then on the 168 NCE CT data set as described in the next section. 

4.2.4 Texture feature extraction 

As different lung tumours have different sizes, dependent on the stage of development and aggression, a 

size that ensures capturing of the texture variation in each ROI is needed. Smaller areas would not have 

sufficient pixels to reliably compute the texture parameters, while larger areas would exclude relatively 

small size tumours from the calculations. Therefore, we have empirically chosen an ROI of size 32 x 32 

pixels to be extracted from each tumour region of the 201 CT images representing both data sets (33 CE 

and 168 NCE), as this chosen size would balance the trade-off between tumour size and texture area. 

Seven different texture analysis methods were applied to analyse the texture characteristics of the ROIs. 

These methods are represented by Gaussian Markov random field (GMRF) and fractal dimension (FD) 

which are model based, and autocovariance function (ACF), runlength matrix (RLM) and grey level co-

occurrence matrix (CM) which are statistically based, and discrete wavelet packet transform (WP) and 

Gabor filters (GF) being wavelet-based. 

The applied statistical and model-based texture measures are as described in chapter 5, and the 

multiresolution chapter explains the wavelet-based measures. The only difference is in how the WP 

features are extracted, for which, each tumour ROI is decomposed down to two levels of resolution and 

the strongest energy subband for the leaves of each of the first level nodes (i.e.  LL11, LH12, HL13 and 

HH14) are solely included in the ROI feature vector. An example is illustrated in Fig. 4.6, where a tumour 

ROI of the 56
th
 case in the NCE CT data set is extracted and decomposed into WPs down to the second 

level, with the corresponding subbands energy values shown in Fig. 4.7. 
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Fig. 4.5 One dimensional horizontal grey-level profile along the middle of an extracted ROI from the 

background (open air) uniform area in the CT image of Fig. 4.1(a) and its corresponding reconstructed clean 

and noisy versions. 

      (a)                     (b) 

Fig. 4.4 Noise suppression after adaptive filtering (a) is the clean reconstructed CT 

image, and (b) is the difference image between the clean and original image. The 

amount of reduced subtle noise becomes obvious in the open-air background above the 

patient which is indicated by an arrow. 
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4.2.5 Measuring separability quality 

The final phase in this chapter is the comparison process where the reconstructed images are compared to 

the original CT images in terms of how much deviation is incurred in the reconstructed images due to 

noise (removal/addition) after normalising all extracted texture measures. The Fisher’s criterion which is 

a nonparametric statistical distance measure was used for comparison by assessing the quality of 

separability of two classes. It represents the ratio of the between-class variance relative to the within-class 
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Fig. 4.6 A two level wavelet packet transform decomposition for an extracted lung 

tumor ROI of case 56 in the NCE CT data set. The subscripts for each subband (e.g. 

HL23) indicate the level and the subband number; respectively. 

Fig. 4.7 Subband energy values for the tumour ROI decomposition in 

Fig. 4.6. The highlighted subbands represent the highest energies in the 

second level of decomposition. 
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variance. Considering a c-class problem and for N images, the between-class scatter matrix (𝑆𝐵) and 

within-class scatter matrix (𝑆𝑊) can be defined as 

𝑆𝐵 =  𝑁𝑖 𝜇𝑖 − 𝜇  𝜇𝑖 − 𝜇 𝑇
𝑐

𝑖=1

                 (4.4) 

𝑆𝑊 =    𝑥𝑘 − 𝜇𝑖  𝑥𝑘 − 𝜇𝑖 
𝑇

𝑥𝑘∈𝑋𝑖

𝑐

𝑖=1

=  𝑆𝑊𝑖

𝑐

𝑖=1

                 (4.5) 

where 𝜇 is the mean of all images, 𝜇𝑖  is the mean of class 𝑋𝑖 , 𝑆𝑊𝑖
 is the covariance of class 𝑋𝑖 , and 𝑁𝑖  is 

the number of images in 𝑋𝑖 . In case of a multi-feature vector, the distance can be measured by the formula 

[114]:  

𝐽 𝑊𝑗  =
𝑊𝑗

𝑇𝑆𝐵𝑊𝑗

𝑊𝑗
𝑇𝑆𝑊𝑊𝑗

                 (4.6)      

where 𝑊𝑗  , 𝑗 = 1,2,…𝑘, are the set of discriminant eigenvectors of 𝑆𝐵  and 𝑆𝑊, corresponding to the k 

largest eigenvalues 𝜆𝑗 . Although distance measures are often used in determining accuracy of clusters 

separability, it is used here to indicate how non-separable (i.e. close) the reconstructed images are to the 

original. Our aim is to find the best non-separable texture measure between the original and reconstructed 

images which is least susceptible to noise. For our case smaller values show better performance since the 

larger the Fisher criterion values the more significant the difference between the two assessed classes. 

4.3 Results and discussion 

For both CE and NCE CT data sets, the class separability between the original CT image and its 

reconstructed clean and distorted versions measured by Fisher’s distance is listed in Table 4.4 by Joc and 

Jon; respectively. In order to make the analysis of Table 4.4 easier, the texture features are sorted in 

ascending order in Table 4.5, placing the least separable at the top and vice versa. From the first glance, it 

can be seen that the WP was the least affected by noise in both data sets and for the cleaned and distorted 

versions as well. Regarding the CE CT data set, there was no difference in the order between the used 

texture methods for characterising the clean and distorted versions CT images. This shows that CE CT 

images can assist in highlighting the lung texture variations, and hence reducing the effect of distortion on 

the extracted tissue characteristics.  

As the noise found in the both data sets was subtle, the distorted CT image versions contributed in giving 

some emphasis to this noise. However, we assume that the noise encountered in the CT images is within 

acceptable ranges and not quite visible to the extent that would deform the structure of the observed ROI 

─ which is in fact the case in most captured CT images. Additionally, the FD, ACF and GF, which came 

next to the WP, scored nearly a similar score in terms of separability, with the FD being the least affected 

by noise among them. The RLM, CM and GMRF which derive texture features in four different 
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directions did not perform as efficiently as the rest of the previously mentioned texture methods, with the 

GMRF scoring as being the most susceptible to noisy conditions. On the other hand, the NCE CT data set 

witnessed some change in the order of the tested texture methods, and in-between the clean and distorted 

CT versions. Although CE CT images would improve the reliability of the used texture methods for 

analysis, these images are not easy to acquire in comparison to the conventional NCE CT images, where 

patients need to be injected with a special contrast agent into a large blood vessel prior to image 

capturing, rendering it unpleasant for patients. The administered contrast agent needs also to be 

eventually eliminated in the body by the kidneys; therefore, patients might need to undergo blood tests to 

evaluate their kidney dialysis performance before injection. Moreover, some patients might also have an 

allergic reaction to the contrast agent used [115], and having an allergy to iodine would contribute 

towards increasing this risk, making this technique not suitable for all patients. It can also be seen from 

Table 4.5 that the noisy versions of the NCE CT images preserved the same noise susceptibility order as 

in its CE counterpart except for the last two methods, where the CM was the most affected in comparison 

to the GMRF. Furthermore, the FD had nearly no difference between the clean and distorted versions, yet 

its order has improved in case of distortion ─ second in the fourth column in Table 4.5 ─ similar for the 

GMRF and RLM which showed a one step improvement compared to the clean case, while WP and GF 

had the same position in both clean and distorted versions. 

It should be noted that this work does not intend to compare the performance of these texture measures in 

terms of discrimination capability or which provides a better characterisation of the lung tissue, but to 

assess their immunity when used under the presence and absence of the same noise detected in the 

investigated CT images. However, it is no coincidence for WP and FD texture measures which showed 

the least susceptibility to noise to offer good performance in lung tissue analysis [1, 103]. Thus, a relation 

between the immunity of a texture measure to noise and how effectively it can characterise a texture 

under investigation exists; especially when analysing non-stationary medical texture, which creates 

another challenge in addition to noise. The improved capability of the WP and FD in analysing lung 

tissue could be interpreted as their ability to exclude noise with minimum effect on the analysed texture. 

That is, by decomposing the ROI into several subbands for the WP case, high subbands can be easily 

eliminated from further decomposition where random noise is usually present in the high subbands. 

Herein, the subbands with the strongest energy were only selected from the leaves of each decomposed 

subband for the feature vector. Also the FD can mitigate the effect of noise as it gives a quantitative 

assessment of the roughness of the surface by examining the texture ROI at different scales; thus the noise 

would not have a similar effect at all scales. Another point is that the ACF came second for the Joc NCE 

CT images and third in the rest of Table 4.5; nevertheless, it has a poor performance in image 

classification [3]. This means that the ACF is less susceptible to noise, yet this is due to its initial poor 

characterisation of texture resulting in the little difference between the original and the clean and distorted 

image versions. 
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Observing the number of features generated from each texture measure, it seems that the number of 

extracted features plays an important role in susceptibility to noise. CM or RLM which extracts 16 

different features was more prone to noise as compared to the WP which had only 4 features. This might 

be due to the fact that texture measures with large number of features tend to capture more variations of 

the intensity, and as a result the probability of noise contribution would be amplified. Furthermore, not all 

extracted features relevant to a specific texture method have the same discriminating power, and thus 

optimisation might result in a fewer number of features which can still efficiently characterise the selected 

ROI and be less susceptible to noise distortion. On the other hand, although some studies reported signal 

dependent Gaussian noise distributions in low-dose CT images [116], and the Gaussian was the dominant 

type of noise in the NCE CT data set, this work showed that types of noise other than Gaussian can be 

encountered even when using the same CT scanner, which might be due to insufficient isolation of some 

of the CT scanner electronics when some of the images were acquired.  

This indicates that noise can have some impact on the variability of diagnosis reports depending on the 

texture measure used for analysis and classification. Some texture measures are more reliable in terms of 

classification [3, 117], yet their accuracy might start to give misleading results in case of noise presence, 

causing an increase in inaccuracy as noise becomes more obvious. Therefore, accuracy and noise 

susceptibility must be taken into consideration by the physician depending on the type of analysis and the 

area of texture. Given the variation in size, shape and stage between the different extracted lung tumours 

in this study, the texture measures were applied to a 32 x 32 size ROI which ensures the inclusion of all 

tumours (i.e. the small size ones as well). So based on the results and whenever it becomes difficult to 

extract a sufficiently large ROI for analysis, physicians can use texture measures which exhibited the least 

susceptibility to noise such as WP or FD for small areas (e.g. size ≤ 32 x 32) of texture where the 

probability of noise deforming the structure of the texture is higher, and use the texture measures known 

for their good capability in texture discrimination. But their performance was more prone to noise, as the 

CM or GMRF for example, for larger ROIs. Also, the Fisher’s distance showed that the five of the seven 

clean CE CT reconstructions are much nearer to the original from the distorted ones, therefore adaptive 

filtering can assist in improving some of the texture measures’ efficiency.  

Possible improvement in order to enhance the reliability of the reported results in this work is that noise 

susceptibility comparison can be made after applying an optimum feature selection technique for each of 

texture methods. By that, features with weak discriminating capability are eliminated and the total 

number of features for each method is reduced to a minimum. Also the difference in the acquired images 

slice thickness between the CE and the NCE data sets might affect the accuracies of the measured 

Fisher’s distances; yet this needs to be further investigated. A future trend would be assessing the quality 

of the extracted features under reduced radiation dose (RRD) CT images. For patient’s safety and to avoid 

the relatively high dose of radiation in CT modalities, RRD CT images are acquired in case of children as 

their tissue is more sensitive to the radiation effect [118], or for adults depending on the kind of organ 
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under investigation. Lowering the radiation dose
 
can be achieved by decreasing the tube current (mAs) or 

beam energy (kV) with high
 
pitches or table-speed, and using thicker slices [119]. The effect of RRD CT 

images, which usually yield noisier and lower contrast images, on extracted texture measures can assist in 

performance comparison under noisy and lower quality image conditions. Also investigating the texture 

measures susceptibility in other modalities when other types of noise might be present would be 

advantageous.  

Table 4.4 Fisher’s distance between original and reconstructed clean and noisy CT images, with the number 

of extracted features for each texture measure shown between brackets 

Texture 

measure 

Normalised Fisher’s distance 

CE NCE 

Joc Jon Joc Jon 

RLM (16) 1.16 x10
-27

 2.17 x10
-27

 2.07 x10
-26

 9.60 x10
-27

 

CM (16) 1.90 x10
-26

 2.84 x10
-26

 6.91 x10
-27

 1.29 x10
-26

 

ACF (8) 3.92 x10
-28

 1.68 x10
-28

 7.00 x10
-30

 3.16 x10
-29

 

FD (5) 1.00 x10
-28

 1.29 x10
-28

 2.93 x10
-29

 2.90 x10
-29

 

GMRF (13) 1.12 x10
-24

 1.07 x10
-24

 6.24 x10
-26

 1.16 x10
-26

 

GF (12) 9.61 x10
-28

 1.48 x10
-27

 1.85 x10
-28

 3.18 x10
-28

 

WP (4) 3.66 x10
-31

 8.61 x10
-31

 1.25 x10
-31

 8.70 x10
-32

 

 

Table 4.5 Sorted (from lowest to highest) texture measures  

in Table 4.4 according to class separability 

CE NCE 

Joc Jon Joc Jon 

WP WP WP WP 

FD FD ACF FD 

ACF ACF FD ACF 

GF GF GF GF 

RLM RLM CM RLM 

CM CM RLM GMRF 

GMRF GMRF GMRF CM 

4.4 Conclusion 

The robustness or how well a specific texture measure can tolerate noise in a CT image of lung tumour 

texture was investigated. Susceptibility of seven different texture analysis measures to noise was 

investigated by using Fisher’s distance to compare the original CT images with their corresponding 

reconstructed clean and noisy versions. Two different data sets were used; Rayleigh and Gaussian noise 

was encountered in the CE data set, while the Gaussian noise was the dominant in the NCE data set. It 

was shown that CE CT images yield more stable results in comparison to their conventional or NCE 

counterparts, while the WT and GF wavelet-based texture methods were stable in both data sets. The WP 

and FD which could characterise the lung tissue better than the other texture measures were the least 

affected by noise. Moreover, WP and FD had the least number of extracted features in comparison to 

RLM and CM which had the highest number of features, and the last two with the GMRF were most 

sensitive to noise. As well, adaptively filtered images can assist in reducing subtle noise, and hence offer 

better texture classification accuracy. 
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Chapter 5 

MULTI-FEATURE CLASS ASSIGNMENT FOR HISTOPATHOLOGICAL 

MENINGIOMA TUMOUR IMAGES 

Preview 

Providing an improved technique which can assist pathologists in correctly classifying meningioma 

tumours with significant accuracy is our main objective. The proposed technique, which is based on 

optimum texture measure combination, inspects the separability of the RGB colour channels and selects 

the channel which best segments the cell nuclei of the histopathological images. The morphological 

gradient is applied to extract the region of interest for each subtype and for elimination of possible noise 

(e.g. cracks) which might occur during biopsy preparation. Meningioma texture features are extracted by 

four different texture measures (two model-based and two statistical-based) and then corresponding 

features are fused together in different combinations after excluding highly correlated features, and a 

Bayesian classifier was used for meningioma subtype discrimination. The combined Gaussian Markov 

random field and run-length matrix texture measures outperformed all other combinations in terms of 

quantitatively characterising the meningioma tissue, achieved an overall classification accuracy of 

92.50%, improving from 83.75% which is the best accuracy achieved if the texture measures are used 

individually.  

5.1 Introduction 

Meningiomas are one of the most recurring tumours which affect the central nervous system [120-122]. 

These types of tumours, which have a variable growth potential,  develop from the meninges ─ hence the 

naming ─ which are the membranes that cover the brain and spinal cord, and usually do not metastasise 

(i.e. spread) beyond the location where it originates [38]. It is one of the only brain tumours more 

common in women than in men, and in general, in 94% of the cases the tumour is benign, and the 

remaining 2% and 4% it is considered malignant and aggressive; respectively [37]. 

A means of inspecting histopathological characteristics at a molecular or cellular level is the motivation 

for the use of microscopic imaging. This modality has the advantage of providing coloured high 

resolution images exposing the richness or denseness of the examined underlying texture as compared to 

other non-invasive imaging modalities, assisting in giving a better interpretation to histopathological 

images, through studying the effect of disease on the cellular characteristics of the body tissue. This is 

done by previously staining the extracted tissue biopsies with dyes for visual contrast improvement, 

which will then facilitate the delineation of cell nuclei, giving a better tissue characterisation. Despite this 

modality being invasive, which is unpleasant for patients, physicians usually require a biopsy for a 

definite answer if they are suspicious about a certain abnormality in an image acquired by a non-invasive 
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imaging modality, and a closer view of the histopathological specimens can assist in verifying the tumour 

type. 

Pathologists have been using microscopic images to study tissue biopsies for a long time, relying on their 

personal experience on giving decisions on the healthiness state of the examined biopsy. This includes 

distinguishing normal from abnormal (i.e. cancerous) tissue, benign versus malignant tumours and 

identifying the level of tumour malignancy. Nevertheless, variability in the reported diagnosis may still 

occur [123-125], which could be due to the non-homogeneous nature of the diseases (i.e. not all samples 

referring to a certain tumour subtype look identical, raising the issue of misclassification), noise arising 

from the staining process of the tissue samples,…etc. Therefore, through the past three decades, 

quantitative techniques have been developed for computer-aided diagnosis, which aim to assist 

pathologists in the process of cancer diagnosis [126]. Currently, the challenge remains in developing a 

better technique that not just automates the diagnostic procedure, but also applies the optimum texture 

feature extraction that better captures and understands the underlying physiology to improve cancer 

recognition accuracy. 

A number of research studies have been applied to histopathological images for different tumours in an 

attempt to automate the diagnosis procedure.  Some of them relied upon one texture measure (i.e. method) 

for feature extraction, such as extraction of wavelet-based features [56, 127, 128], or using other measures 

individually like fractal dimension (FD) or gray-level co-occurrence matrix (CM) for classification [129, 

130].  Using more than one measure for classification was applied as well,  such as using spatial and 

frequency texture features for classification by regression trees analysis [131]. Some used morphological 

characteristics for feature extraction [132, 133] and others focused more on classifier improvement [134, 

135]. Regarding meningiomas, some used unsupervised learning techniques for training artificial neural 

networks, e.g. a self organizing map, for classifying meningioma features derived by wavelet packet 

(WP) transform [56]. An average accuracy of 79% was reported for classifying four different meningioma 

subtypes. Others applied a supervised learning method for classification of meningioma cells [58], using a 

decision tree after selecting the most relevant features from a base of grey and coloured image features. 

Also in another two studies the performance of features extracted from four meningioma subtypes using 

adaptive WP transform was compared to local binary patterns (LBP) [59] and to co-occurrence methods 

[60]. The WP method gave the highest classification accuracy of 82.1% when features were classified via 

a support vector machine classifier after applying a principal component analysis for dimensionality 

reduction. 

As there is very limited research in the literature on fully-automating meningioma classification with 

significant accuracy, this research sets out to provide a novel method that combines model and statistical-

based texture measures in an endeavour to provide a better understanding on how they relate to the 

underling physiology. The aim is to improve the classification accuracy by integrating the RGB colour 
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channels that better assists the morphological process in segmenting the tumour structure with the best 

combination of texture features that best captures the characteristics of the examined case. 

We intend to seek possible answers to several questions on histopathological image classification: a) will 

selecting the appropriate colour channel contribute to improving texture classification? b) which texture 

combinations –after removal of highly correlated features– perform better than the best of the individual 

measures and why (i.e. how do they relate to underling physiology)? c) will using multiple texture 

extraction methods (e.g. more than two methods) guarantee a higher classification accuracy? d) and what 

is the effect of noise on histopathological images? 

This chapter is arranged as follows. Section 5.2 explains the applied technique, and section 5.3 will show 

the experimental results. Then an analysis of the applied texture measures behaviour followed by a 

discussion is presented in sections 5.4 and 5.5; respectively. Finally, section 5.6 summarises the major 

outcomes. 

5.2 Methodology 

Two main stages are involved in the histopathological discrimination technique. In the pre-feature 

extraction stage, the best colour channel that maximises cell nuclei structure separation from the 

background is selected, then this colour channel will be used to morphologically process all 

histopathological specimens (i.e. training and testing images). In the next stage, the texture features are 

extracted and fused in all possible combinations, and the optimum features are selected for classification. 

The complete process is depicted in Fig. 5.1. 
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Fig. 5.1 Diagram explaining the process followed in classification of the histopathological 

meningioma images. 
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5.2.1 Image acquisition and preparation 

Four subtypes of grade I meningioma tissue biopsies (see Fig. 5.2) distinguished according to the World 

Health Organisation (WHO) grading system [136] are used in this study. Each subtype has its own 

features (Table 5.1) which pathologists look for in the processes of tumour classification. The diagnostic 

tumour samples were derived from neurosurgical resections at the Bethel Department of Neurosurgery, 

Bielefeld, Germany for therapeutic purposes, routinely processed for formalin fixation and embedded into 

paraffin. Four micrometer thick microtome sections were dewaxed on glass slides, stained with Mayer’s 

haemalaun and eosin (H&E), dehydrated and cover-slipped with mounting medium (Eukitt®, O. Kindler 

GmbH, Freiburg, Germany). Archive material of cases from the years 2004 and 2005 were selected to 

represent typical features of each meningioma subtype. Slides were analysed on a Zeiss Axioskop 2 plus 

microscope with a Zeiss Achroplan 40×/0.65 lens. After manual focusing and automated background 

correction, 1300 × 1030 pixels, 24 bit, true colour RGB pictures were taken at standardised 3200 K light 

temperature in TIF format using Zeiss AxioVision 3.1 software and a Zeiss AxioCam HRc digital colour 

camera (Carl Zeiss AG, Oberkochen, Germany). Five typical cases were selected for each diagnostic 

group and four different photomicrographs were taken of each case, resulting in a set of 80 pictures. Each 

original picture was truncated to 1024 × 1024 pixels and then subdivided in a 2 × 2 subset of 512 × 512 

pixel pictures. This resulted in a database of 320 sub-images for further analysis. All acquired images 

were fully anonymised and our work did not influence the diagnostic process or the patient’s treatment. 

 

 

 

Table 5.1 Main histological features for the four meningioma subtypes in Fig. 5.2 

Subtype Characteristics 

Fibroblastic 
Spindle-shaped cells resembling fibroblasts in appearance, with abundant 

 amounts of pericellular collagen. 

Meningothelial Broad sheets or lobules of fairly uniform cells with round or oval nuclei. 

Transitional 
Contains whorls, few psammoma bodies and cells having some fibroblastic  

features (i.e. spindle-shaped cells) 

Psammomatous 
A variant of transitional meningiomas with abundant psammoma bodies  

and many cystic spaces. 

 

Fig. 5.2 Four types of grade I meningioma, from left to right (fibroblastic, meningothelial, transitional 

and psammomatous). 
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5.2.2 RGB space colour segmentation 

Although the RGB colour model is not as intuitive as the HSV (hue, saturation and brightness) model for 

human perception, coloured image segmentation generally achieves better results using the former colour 

model [86]. Therefore the coloured histopathological images were decomposed to the red, green and blue 

colour channels to investigate which colour would better distinguish the cell nuclei from the background, 

hence assisting in improving the classification accuracy in the subsequent morphological and texture 

feature extraction stages.  

One image 𝐼 𝑥,𝑦, 𝑧 , where z is the RGB colour component, is randomly selected from each of the four 

meningioma subtypes. Then a simple segmentation procedure is applied by first determining the mean 

RGB vector 𝑎𝑧 =   𝑎𝑅 ,𝑎𝐺 ,𝑎𝐵  of a sample cell nucleus (see Fig. 5.3), where each component of the 

vector represents the corresponding colour channel mean. This vector will be used in segmenting each of 

the colour channel images on a pixel-by-pixel basis. As recommended by [86], the size of the operation 

box used in the segmentation process was chosen to be 1.25 times the standard deviation 𝜍𝑧  of the 

corresponding colour component of the selected cell nucleus sample values. Shown in (5.1), each of the 

pixels were then classified as either 1 or 0 by comparison with 𝑎𝑧  giving the segmentation mask which 

when multiplied with the corresponding colour channel will give the segmented image 𝐼𝑠𝑒𝑔 . Also a 

reference image 𝐼𝑟𝑒𝑓  is generated for each of the randomly selected subtype images after manually 

segmenting the cell nuclei. Fig. 5.4 shows 𝐼𝑠𝑒𝑔  and 𝐼𝑟𝑒𝑓  for the blue colour channel of the transitional 

meningioma subtype. 

𝐼𝑠𝑒𝑔  𝑥,𝑦, 𝑧 =   
1 𝑖𝑓 𝐼 𝑥,𝑦, 𝑧 ∈ (𝑎𝑧 ± 1.25𝜍𝑧) 
0 𝑂𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

   (5.1) 

The Bhattacharyya distance was used to asses the quality of segmentation. For classes with a Gaussian 

distribution, the Bhattacharyya distance 𝐵𝐼1𝐼2  is used to estimate the upper bound of classification error 

𝑃𝜀  between feature image pairs as in (5.2) [114]. A smaller error value indicates improved separability 

between the reference and the segmented image. Finally, the colour component with the best 

segmentation output would be selected for morphological processing. 

𝐵𝐼1𝐼2 =
1

8
 𝜇1 − 𝜇2 

𝑇  
𝛴1𝛴2

2
 
−1

 𝜇1 − 𝜇2 +
1

2
𝑙𝑛  

 𝛴1 + 𝛴2 

2  𝛴1  𝛴2 
  

𝑃𝜀 =  𝑃(𝐼1)𝑃(𝐼2) 𝑒𝑥𝑝(−𝐵𝐼1𝐼2 )   (5.2) 

Here  𝛴𝑖  is the determinant of 𝛴𝑖 , and 𝜇𝑖  and 𝛴𝑖  are the mean vector and covariance matrix of class 𝐼𝑖  

(which refers to  𝐼𝑟𝑒𝑓  and 𝐼𝑠𝑒𝑔 ), and 𝑃(𝐼𝑖) is the probability of 𝐼𝑖 . 
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We will see afterwards that the selection of the colour component of texture plays a significant role in 

classification accuracy depending on the colour of the examined structure. 

5.2.3 Morphological processing 

Having selected the appropriate colour channel, morphological processing is required to make the cell 

nuclei more distinguishable from the background, which has also another advantage which is the 

elimination of possible noise occurrence [137]. All sets of images are pre-processed by computing the 

morphological gradient (𝑀𝑔), which is simply the difference between the dilation and erosion of each 

processed image. It assists in highlighting the edges of the general structure of the texture, which is shown 

in Fig. 5.5. To simplify indexing, the image  𝐼 𝑥,𝑦  is translated instead of the structuring element 𝑘 [86]. 

The gray-scale dilation of image 𝐼 𝑥,𝑦  by structuring element 𝑘 𝑥,𝑦  can be regarded as the function of 

all displacements  𝑠, 𝑡 , such that 𝐼 𝑥,𝑦  and 𝑘 𝑥,𝑦  overlap by at least one element, this is emphasised 

in the (5.3) as  𝑠 − 𝑥  and  𝑡 − 𝑦 , and 𝑥 and 𝑦 have to be in domain 𝐼 and 𝑘; respectively. 

 𝐼(𝑥,𝑦) ⊕𝑘(𝑥, 𝑦)  𝑠, 𝑡 = 𝑚𝑎𝑥 𝐼 𝑠 − 𝑥, 𝑡 − 𝑦 + 𝑘 𝑥, 𝑦  |  𝑠 − 𝑥 ,  𝑡 − 𝑦 ∈  𝐷𝐼;   𝑥,𝑦 ∈  𝐷𝑘              (5.3)  

𝐷𝐼 and 𝐷𝑘  are the domains of  𝐼 and 𝑘, respectively. The structuring element 𝑘(𝑥,𝑦) operates in analogy 

to a convolution kernel applied to an image. We empirically chose the size of the structure element to be a 

square 5 x 5 pixels of ones. 

Similarly, gray-scale erosion of 𝑘(𝑥, 𝑦) by image 𝐼(𝑥,𝑦) is the function of all displacements  𝑠, 𝑡  such 

that 𝐼(𝑥,𝑦), translated by  𝑠, 𝑡 , is contained in 𝑘(𝑥,𝑦). 

Fig. 5.3 The solid white rectangle in 

the magnified region indicates the 

selected sample cell nucleus used for 

segmenting all relevant meningothelial 

subtypes. 

Fig. 5.4 Left to right, segmented and reference image for 

transitional meningioma subtype. 
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 𝐼 𝑥,𝑦 ⊝ 𝑘 𝑥, 𝑦   𝑠, 𝑡 = 𝑚𝑖𝑛 𝐼 𝑠 + 𝑥, 𝑡 + 𝑦 − 𝑘 𝑥, 𝑦  |  𝑠 + 𝑥 ,  𝑡 + 𝑦 ∈  𝐷𝐼 ;  𝑥, 𝑦 ∈  𝐷𝑘              (5.4) 

Hence 𝑀𝑔can be represented as, 

𝑀𝑔 =  𝐼 𝑥,𝑦 ⊕ 𝑘 𝑥,𝑦  −  𝐼 𝑥,𝑦 ⊝ 𝑘 𝑥,𝑦                   (5.5)   

  

 

 

5.2.4 Feature extraction approaches 

Five different methods – two model and three statistical based – were used to extract different texture 

features from 320 image samples referring to four meningioma subtypes, as follows:- 

5.2.4.1 Model-based features methods 

a) Random fields 

Based upon the Markovian property, which is simply the dependence of each pixel in the image on its 

neighbours only, a Gaussian Markov random field model (GMRF) for third order Markov neighbours was 

used [76] (see Fig. 5.6). Seven GMRF parameters were estimated using the least square error estimation 

method. 

The GMRF model is defined by the following formula:  

𝑝 𝐼𝑥𝑦  𝐼𝑘𝑙 ,  𝑘, 𝑙 ∈ 𝑁𝑥𝑦  =
1

 2𝜋𝜍2
𝑒𝑥𝑝 −

1

2𝜍2
 𝐼𝑥𝑦 − 𝛼𝑙𝑠𝑥𝑦 ;𝑖

𝑛

𝑙=1

 

2

                (5.6) 

  

 

The right hand side of (5.6) represents the probability of a pixel  𝑥,𝑦  having a specific grey value 𝐼𝑥𝑦  

given the values of its neighbours, n is the total number of pixels in the neighbourhood 𝑁𝑥𝑦   of pixel 𝐼𝑥𝑦 , 

which influence its value, 𝛼𝑙  is the parameter with which a neighbor influences the value of  𝑥, 𝑦 , and 

𝑠𝑥𝑦 ;𝑖  is the sum of the values of the two pixels which are in symmetric position about  𝑥,𝑦  and which 

influence the value of  𝑥,𝑦  with identical parameters (see Fig. 5.6) where, 

Fig. 5.5 Blue colour channel image and its corresponding 

morphological gradient. 
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𝑠𝑥𝑦 ;1 = 𝐼𝑥−1,𝑦 + 𝐼𝑥+1,𝑦 𝑠𝑥𝑦 ;3 = 𝐼𝑥−2,𝑦 + 𝐼𝑥+2,𝑦 𝑠𝑥𝑦 ;5 = 𝐼𝑥−1,𝑦−1 + 𝐼𝑥+1,𝑦+1

𝑠𝑥𝑦 ;2 = 𝐼𝑥 ,𝑦−1 + 𝐼𝑥 ,𝑦+1 𝑠𝑥𝑦 ;4 = 𝐼𝑥 ,𝑦−2 + 𝐼𝑥 ,𝑦+2 𝑠𝑥𝑦 ;6 = 𝐼𝑥 ,𝑦−2 + 𝐼𝑥+1,𝑦−1
 

  

 

For an image of size 𝑀 and 𝑁 the GMRF parameters α and σ are estimated using a least square error 

estimation method, as follows: 

 

𝛼1

⋮
𝛼𝑛
 =    

𝑠𝑥𝑦 ;1𝑠𝑥𝑦 ;1 ⋯ 𝑠𝑥𝑦 ;1𝑠𝑥𝑦 ;𝑛

⋮ ⋱ ⋮
𝑠𝑥𝑦 ;𝑛𝑠𝑥𝑦 ;1 ⋯ 𝑠𝑥𝑦 ;𝑛𝑠𝑥𝑦 ;𝑛

 

𝑥𝑦

 

−1

 𝐼𝑥𝑦  

𝑠𝑥𝑦 ;1

⋮
𝑠𝑥𝑦 ;𝑛

 

𝑥𝑦

                  (5.7) 

𝜍2 =
1

 𝑀 − 2  𝑁 − 2 
  𝐼𝑥𝑦 − 𝛼𝑙𝑠𝑥𝑦 ;𝑙

𝑛

𝑙=1

 

2

𝑥𝑦

              (5.8) 

The values shown in Table 5.1 represent the GMRF parameters for the four different meningioma 

subtypes in Fig. 5.2. The difference between some of the subtypes GMRF parameters could be minor; 

therefore, having a larger model order that can be more sensitive to the neighbourhood of each pixel is 

important. Nonetheless, we need to manage the tradeoff between having a large order model which would 

be sufficient to capture the characteristics of each subtype texture, where small order models might 

overlook some complimentary information; on the other hand, not too large to include redundant 

information which would increase the processing time and dimensionality of the estimations. Empirically, 

a third order GMRF model was the most suitable given the nature of the texture under investigation. 

Using the same classifier discussed in the pattern classification technique section, the 3
rd

 order model had 

a 25% and 11.25% classification improvement over the 2
nd

 (having 5 parameters) and 4
th
 (having 13 

parameters) models respectively. 

𝐼𝑥+2,𝑦−2 𝐼𝑥+2,𝑦−1 𝐼𝑥+2,𝑦  𝐼𝑥+2,𝑦+1 𝐼𝑥+2,𝑦+2 

𝐼𝑥+1,𝑦−2 𝐼𝑥+1,𝑦−1 𝐼𝑥+1,𝑦  𝐼𝑥+1,𝑦+1 𝐼𝑥+1,𝑦+2 

𝐼𝑥 ,𝑦−2 𝐼𝑥 ,𝑦−1 𝐼𝑥𝑦  𝐼𝑥 ,𝑦+1 𝐼𝑥 ,𝑦+2 

𝐼𝑥−1,𝑦−2 𝐼𝑥−1,𝑦−1 𝐼𝑥−1,𝑦  𝐼𝑥−1,𝑦+1 𝐼𝑥−1,𝑦+2 

𝐼𝑥−2,𝑦−2 𝐼𝑥−2,𝑦−1 𝐼𝑥−2,𝑦  𝐼𝑥−2,𝑦+1 𝐼𝑥−2,𝑦+2 

 

Fig. 5.6 Third order Markov neighbourhood (in dark) for a sample image pixel  𝑰𝒙𝒚, compared to second and 

fourth order Markov neighbourhood represented by the 𝟑 × 𝟑 inner box and the 𝟓 × 𝟓 outer box, respectively. 
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Table 5.2 Estimated GMRF parameters using a 3
rd

 order Markov neighbours for the  

subtypes shown in Fig. 5.2 

Meningioma type α1 α2 α3 α4 α5 α6 σ 

Fibroblastic 0.5049 0.5376 -0.2577 -0.2466 -0.0078 -0.0311 1.0046 

Meningothelial 0.5157 0.5285 -0.2519 -0.2523 -0.0147 -0.0259 1.0445 

Psammomatous 0.5177 0.5239 -0.2558 -0.2527 -0.0126 -0.0213 0.9077 

Transitional 0.5157 0.5275 -0.2536 -0.2535 -0.0129 -0.0238 1.3348 

 

b) Fractals 

As discussed in the previous chapter, fractals are used to describe non-Euclidean structures that show 

self-similarity at different scales [85]. There are several fractal models used to estimate the fractal 

dimension; the fractal Brownian motion (fBm) which is the mean absolute difference of pixel pairs as a 

function of scale as shown in (5.9) was adopted [94]. 

𝐸 𝛥𝐼 = 𝐾Δ𝑟𝐻    (5.9)
      

Δ𝐼 =  𝐼 𝑥2, 𝑦2 − 𝐼 𝑥1 , 𝑦1   is the mean absolute difference of pixel pairs; ∆𝑟 =   𝑥2 −  𝑥1 
2 +   𝑦2 −  𝑦1 

2 is 

the pixel pair distances; H is called the Hurst coefficient; and K is a constant. 

The fractal dimension (FD) can be then estimated by plotting both sides of (5.9) on a log-log scale and H 

will represent the slope of the curve that is used to estimate the FD as: FD = 3 – H. 

By operating pixel by pixel, an FD image was generated for each meningioma subtype where each pixel 

has its own FD value, see Fig. 5.7. Then first order statistical features shown in Table 5.3 were derived 

from each processed image, which are: mean, variance, kurtosis, lacunarity, and skewness. Also for 

comparison, the same features were estimated using the DBC algorithm used in the previous chapter.  

If we examine the images in Fig. 5.7, we can see that the fBm generated FD images had more visible 

discontinuities compared to the DBC ones. More discontinuities in the absence of visible noise would 

mean a texture with richer information, and hence a more reliable estimation of the roughness of the 

image surface. Thus, we can say that the fBm is better suited to represent textures with macro structures 

(i.e histopathological images) compared to the fine texture in the case of lung tumour CT images; thus 

fBm was adopted for the meningiomas. 

Table 5.3 First order statistics derived from a fractal dimension generated image using fractal        

Brownian motion (without brackets) and differential box counting (inside brackets) algorithms 

Fractal dimension 

derived statistics 

Meningioma subtype 

Fibroblastic Meningothelial Psammomatous Transitional 

Mean 2.8013 (1.7070) 2.8009 (1.7142) 2.8447 (1.7887) 2.7534 (1.6851) 

Variance 0.0313 (0.1352) 0.0349 (0.1396) 0.0247 (0.1259) 0.0416 (0.1393) 

Kurtosis 3.1335 (4.5085) 3.4256 (4.5756) 4.7077 (7.0275) 2.5989 (4.2659) 

Lacunarity 0.0112 (0.0792) 0.0124 (0.0814) 0.0087 (0.0704) 0.0151 (0.0827) 

Skewness -0.9488 (-0.7799) -1.0671 (-0.8490) -1.3915 (-1.2258) -0.7109 (-0.6962) 



68 

 

 

   

   

   

   

 

 

Fig. 5.7 First column represents the blue channel image for meningioma fibroblastic, meningothelial, 

psammomatous and transitional subtypes, whereas the second and third columns are their 

corresponding fractal dimension images computed using the fractal Brownian motion and the 

differential box counting algorithm; respectively. 
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5.2.4.2 Statistical-based features methods 

a) Co-occurrence matrices 

The grey level co-occurrence matrix (CM) 𝑃𝐶𝑀 𝑖, 𝑗 𝛿,𝜃  represents the joint probability of certain sets of 

pixels having certain grey-level values. It calculates how many times a pixel with grey-level 𝑖 occurs 

jointly with another pixel having a grey value 𝑗. For an 𝑀 × 𝑀 image and by varying the displacement 

vector 𝛿 between each pair of pixels, up to 𝑀-1 CMs with different directions 𝜃 can be generated. The 

CM can be formally defined as [76]: 

𝑃𝐶𝑀 𝑖, 𝑗 𝛿,𝜃 =    Δ 𝑖 − 𝐼 𝑚,𝑛  

𝑛𝑚

Δ 𝑗 − 𝐼 𝑚 + 𝛿𝑐𝑜𝑠𝜃,𝑛 + 𝛿𝑠𝑖𝑛𝜃                     (5.10) 

where 𝐼 𝑚,𝑛  is the image grey value of pixel  𝑚,𝑛 ; 𝐼 𝑚 + 𝛿𝑐𝑜𝑠𝜃,𝑛 + 𝛿𝑠𝑖𝑛𝜃  is the grey value of 

another pixel at distance 𝛿 and direction 𝜃;  𝑃𝐶𝑀 𝑖, 𝑗 𝛿,𝜃  is the total number of paired pixels identified in 

the image with grey values 𝑖 and 𝑗. For the above expression  

Δ 𝑥 − 𝑦 =  
1 𝑖𝑓 𝑥 = 𝑦
0 𝑖𝑓 𝑥 ≠ 𝑦

  

A simple graphical illustration for a 5 grey level image with four directions and the displacement vector 

set to one is illustrated in Fig. 5.8. 

Original Image 
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Fig. 5.8 A 5 × 5 pixel image and its 

corresponding co-occurrence matrix 

with 𝜹= 1 and 𝜽= 0°, 45°, 90° and 

135°. 
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It should be noted that the above example does not show the co-occurrence for the last column and row of 

the given image (i.e. the CMs was computed without padding). Regarding the medical images used in this 

work and in order not to ignore the information at the end of each image, circular padding was applied ─ 

presuming that texture is continually extended in both directions. This step is recommended to highlight 

subtle differences between textures, and since different tumour subtypes usually have specific patterns, it 

is more meaningful having circular padding rather than padding with constant values or replicates of the 

last pixels. 

As mentioned before, 𝐴 ×  𝑀 − 1  CMs can be generated for a specific texture, where 𝑀 is the size of 

the image with 𝐴 number of used angles. The extraction of features from all these CMs would be deemed 

unpractical as this will result in increasing the dimensionality of the feature vector used for classification, 

and not all extracted features would have good discrimination capabilities. Thus, a careful selection of the 

𝛿 and 𝜃 parameters will assist in better characterizing the regions of interest in each texture. The smaller 

the 𝛿 the more sensitive the CM becomes to small changes, and 𝜃 assists in showing which orientation 

would result in more co-occurrences, hence identifying the textures’ pattern direction. Since there is not 

an agreed upon rigorous method for selection of CM parameters and the cell nuclei ─which are the 

principal textons that differentiate between the texture of the meningioma subtypes ─ had a relative small 

size in three out of the four subtypes, and a large 𝛿 would overlook the small texture variations, thus a 

small value would be more appropriate. Additionally, some subtypes (e.g. fibroblastic) had their cell 

nuclei distributed in a specific direction which calls for computing the CMs with multiple orientations 𝜃. 

Therefore for each histopathological image, the 𝛿 was set to one and four CMs having directions (0°, 45°, 

90° &135°) were generated, see Fig. 5.9. 

Also, the CMs have been quantised to 32-grey levels (6-bits) to reduce computational time while still 

having clear and discriminable features, and which could also assist in increasing the number of 

neighbouring structures (i.e. edges) for each pixel in the image [76]. An image can be mapped to G grey 

levels by 

𝑃𝐶𝑀 𝑖, 𝑗 𝑄 = 𝑟𝑜𝑢𝑛𝑑  
𝑃𝐶𝑀 𝑖, 𝑗 𝑁
 𝐺𝑜𝑙𝑑 − 1 

×  𝐺𝑛𝑒𝑤 − 1                      (5.11) 

where subscripts Q and N indicated quantised and normalised versions of the CM, and 𝐺𝑜𝑙𝑑  and 𝐺𝑛𝑒𝑤  are 

the maximum grey level before and after quantisation. 

Having the CM normalised to be represented as a joint probability density function, we can then derive 

eight second order statistical features, which are also known as Haralick features [138], for each image. 

Haralick initially proposed a set of 14 features, each of which defines certain properties to be derived 

from the CMs. We have selected eight features, which are the most commonly used in the literature, 

which are: 
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i) Energy (ENG) also referred to as angular second momentum or uniformity: is a way to measure 

disorders in an image through summing the square of all pixels, with lower values indicating a more 

uniform image. 

𝐸𝑁𝐺 =   𝑃(𝑖, 𝑗)2

𝐺−1

𝑗=0

𝐺−1

𝑖=0

               (5.12)  

ii) Entropy (ENT): is a measurement of randomness in the image, with higher entropy values indicating 

complex or random texture. 

𝐸𝑁𝑇 =    𝑃 𝑖, 𝑗  log⁡(𝑃 𝑖, 𝑗 )

𝐺−1

𝑗=0

𝐺−1

𝑖=0

               (5.13) 

iii) Contrast (CON) also known as inertia: is the measurement of intensity contrast or local variations 

between the image pixels, giving lower values for uniform texture. 

𝐶𝑂𝑁 =
1

 𝐺 − 1 2
   𝑖 − 𝑗 2 𝑃 𝑖, 𝑗 

𝐺−1

𝑗=0

𝐺−1

𝑖=0

               (5.14) 

Fig. 5.9 Co-occurrence matrices of the blue colour channel for 

fibroblastic subtype in Fig. 5.2 with 256 grey levels, having 𝜹 = 1 for 

𝜽 = 0°, 45°, 90° and 135°, shown clockwise. 
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iv) Correlation (COR): estimates the correlation between each pixel and its neighbours throughout the 

image. 

𝐶𝑂𝑅 =
1

𝜍𝑥𝜍𝑦
  𝑖𝑗

𝐺−1

𝑗=0

𝐺−1

𝑖=0

𝑃 𝑖, 𝑗 −  𝜇𝑥𝜇𝑦                (5.15) 

where     

𝜇𝑥 =  𝑖  𝑃 𝑖, 𝑗 

𝐺−1

𝑗=0

𝐺−1

𝑖=0

𝜇𝑦 =  𝑗  𝑃 𝑖, 𝑗 

𝐺−1

𝑖=0

𝐺−1

𝑗=0

𝜍𝑥 =   𝑖 − 𝜇𝑥 
2   𝑃 𝑖, 𝑗 

𝐺−1

𝑗=0

𝐺−1

𝑖=0

𝜍𝑦 =   𝑗 − 𝜇𝑦 
2

  𝑃 𝑖, 𝑗 

𝐺−1

𝑖=0

𝐺−1

𝑗=0

 

v) Dissimilarity (DIS): gives a measure how each pixel differs (i.e. how far) from its neighbours in the 

image. 

𝐷𝐼𝑆 =     

𝐺−1

𝑗=0

𝐺−1

𝑖=0

 𝑖 − 𝑗 𝑃 𝑖, 𝑗                (5.16) 

vi) Homogeneity (HOM): is the measurement of how close is the distribution of pixels in the image 

𝐻𝑂𝑀 =    
𝑃 𝑖, 𝑗 

1 +  𝑖 − 𝑗 
 

𝐺−1

𝑗=0

𝐺−1

𝑖=0

               (5.17) 

vii) Inverse Difference Momentum(IDM): similar to homogeneity, but with giving more emphasis ─ the 

square in the denominator ─ to the difference between pixels. 

𝐼𝐷𝑀 =   
𝑃 𝑖, 𝑗 

1 +  𝑖 − 𝑗 2
 

𝐺−1

𝑗=0

𝐺−1

𝑖=0

               (5.18) 

viii) Maximum probability (MP): obtains the value of the most occurring paired combination of pixels in 

the image. 

𝑀𝑃 = 𝑚𝑎𝑥𝑖𝑗 (𝑃 𝑖, 𝑗 )               (5.19) 

All the eight extracted features from the CM may not have equal discriminatory power, and some features 

when fused together may perform much better than with others. The high correlation between some 

features would also affect its feasibility for texture discrimination; thus, a selection procedure that 

excludes highly correlated features would be required. This is evident in Fig. 5.10, where combining the 

homogeneity and correlation features together can give a better separability between the meningioma 

subtypes as compared to the combination of the entropy and energy features, where different subtypes do 

not cluster away from each other.  
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(a) 

 

(b) 

Fig. 5.10 Co-occurrence matrix derived features in four directions for 80 different meningioma images 

equally divided to four subtypes plotted against each other in pairs (a) entropy vs energy, and (b) 

homogeneity vs correlation. 
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b) Run-length matrices 

Another way for extracting higher order statistical texture features is the use of grey level run-length 

matrix (RLM) 𝑃𝑅𝐿𝑀 𝑖, 𝑗 𝜃 , defined as the number of occurrence of runs with pixels of gray level 𝑖 and 

run length 𝑗 co-linear in a given direction 𝜃 [139]. The example in Fig. 5.11 illustrates this process for 

four directions (𝜃= 0°, 45°, 90° &135°) using a five grey level random 5 × 5 pixels image.  It can be 

observed that the first column in the RLMs contains most of the texture information; this is also reflected 

in Fig. 5.12 where the four different direction RLMs of the fibroblastic subtype in Fig. 5.2 are 

concatenated with each other and shown as a surface plot. Considering the number of run-lengths as well, 

it can be seen that the RLM with 45° has a stronger response, and hence a better representation for this 

image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.11 An example of run-length matrices for five grey levels and four different directions. 

Original Image 

1 1 1 0 1 

1 3 3 0 2 

2 2 2 3 0 

1 2 3 2 2 

2 4 2 4 1 

 Run-length 

 0° 1 2 3 4 5 

G
re

y
 l

ev
el

 0 3 0 0 0 0 

1 4 0 1 0 0 

2 4 1 1 0 0 

3 2 1 0 0 0 

4 2 0 0 0 0 

 Run-length 

 45° 1 2 3 4 5 
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 0 1 1 0 0 0 

1 7 0 0 0 0 

2 4 1 1 0 0 

3 2 1 0 0 0 

4 2 0 0 0 0 

 Run-length 

 135° 1 2 3 4 5 
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 0 3 0 0 0 0 

1 5 1 0 0 0 

2 4 1 1 0 0 

3 2 1 0 0 0 

4 2 0 0 0 0 

 Run-length 

 90° 1 2 3 4 5 
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el

 0 1 1 0 0 0 

1 5 1 0 0 0 

2 7 1 0 0 0 

3 4 0 0 0 0 

4 2 0 0 0 0 
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Fig. 5.12 Run-length matrices in four directions (0°, 45°, 90° &135°) of fibroblastic subtype image in Fig. 5.2 

after quantisation to 32 grey levels. Most information is condensed in the first (left-most) column, this 

information starts to fade as we move to higher run-lengths (to the right side).  

For a number of grey levels G and maximum run-length R, several texture features can be derived, the 

initial five features proposed by Galloway [139] are as follows. 

i) Short Run Emphasis (SRE): 

𝑆𝑅𝐸 =
1

𝑛𝑅
  

𝑃 𝑖, 𝑗 𝜃 

𝑗2

𝑅

𝑗=1

𝐺

𝑖=1

=  
1

𝑛𝑅
 

𝑃𝑅 𝑗 𝜃 

𝑗2

𝑅

𝑗=1

               (5.20) 

ii) Long Run Emphasis (LRE): 

𝐿𝑅𝐸 =
1

𝑛𝑅
  𝑃 𝑖, 𝑗 𝜃  .  𝑗2

𝑅

𝑗=1

𝐺

𝑖=1

=  
1

𝑛𝑅
 𝑃𝑅 𝑗 𝜃 

𝑅

𝑗=1

.  𝑗2               (5.21) 

iii) Grey level Non-uniformity (GLN): 

𝐺𝐿𝑁 =
1

𝑛𝑅
   𝑃 𝑖, 𝑗 𝜃  

𝑅

𝑗=1

 

2

=

𝐺

𝑖=1

 
1

𝑛𝑅
 𝑃𝐺 𝑖 𝜃 

2

𝐺

𝑖=1

               (5.22) 

iv) Run Length Non-uniformity (RLN): 

𝑅𝐿𝑁 =
1

𝑛𝑅
   𝑃 𝑖, 𝑗 𝜃  

𝐺

𝑖=1

 

2

=

𝑅

𝑗=1

 
1

𝑛𝑅
 𝑃𝑅 𝑗 𝜃 

2

𝑅

𝑗=1

               (5.23) 

 



76 

 

 

v) Run Percentage (RP): 

𝑅𝑃 =
𝑛𝑟
𝑛𝑝

               (5.24) 

where 𝑃𝑅  and 𝑃𝐺  are the run length and grey level run number vectors; 𝑛𝑟 =   𝑝 𝑖, 𝑗 𝜃 𝑅
𝑗=1

𝐺
𝑖=1  is the 

total number of runs, and 𝑛𝑝  is the number of pixels in the image. In order to distinguish between textures 

for which its SRE and LRE are equal, Chu et al [140] added two new features giving this time the 

emphasis to the grey level. 

i) Low Grey level Runs Emphasis (LGLRE):  

𝐿𝐺𝑅𝐸 =
1

𝑛𝑅
  

𝑃 𝑖, 𝑗 𝜃 

𝑖2

𝑅

𝑗=1

𝐺

𝑖=1

=  
1

𝑛𝑅
 

𝑃𝐺 𝑖 𝜃 

𝑖2

𝐺

𝑖=1

               (5.25) 

ii) High Grey level Runs Emphasis (HGLRE): 

𝐻𝐺𝑅𝐸 =
1

𝑛𝑅
  𝑃 𝑖, 𝑗 𝜃  .  𝑖2

𝑅

𝑗=1

𝐺

𝑖=1

=  
1

𝑛𝑅
 𝑃𝐺 𝑖 𝜃 

𝐺

𝑖=1

.  𝑖2                (5.26) 

Also Dasarathy and Holder [141] further introduced four new measures based on the joint statistics of 

grey level and run-length, as follows, 

i) Short Run Low Grey level Emphasis (SRLGLE): 

SRLGE =
1

𝑛𝑅
  

𝑃 𝑖, 𝑗 𝜃 

𝑖2 .  𝑗2

𝑅

𝑗=1

𝐺

𝑖=1

               (5.27) 

ii) Short Run High Grey level Emphasis (SRHGLE): 

SRHGE =
1

𝑛𝑅
  

𝑃 𝑖, 𝑗 𝜃  .  𝑖2

𝑗2

𝑅

𝑗=1

𝐺

𝑖=1

               (5.28) 

iii) Long Run Low Grey level Emphasis (LRLGLE): 

LRLGE =
1

𝑛𝑅
  

𝑃 𝑖, 𝑗 𝜃  .  𝑗2

𝑖2

𝑅

𝑗=1

𝐺

𝑖=1

               (5.29) 

iv) Long Run High Grey level Emphasis (LRHGLE): 

LRLGE =
1

𝑛𝑅
  𝑃 𝑖, 𝑗 𝜃  .  𝑖2 .  𝑗2

𝑅

𝑗=1

𝐺

𝑖=1

               (5.30) 
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Since generating sparse matrices would degrade the quality of the derived features and hence produce 

more erroneous results, RLM, similar to CM, would be better estimated with coarser quantisation. 

Moreover, fewer grey levels would also reduce noise-induced effects; e.g. making the image more 

independent of the effect of non-uniform illumination (day light or artificial) conditions during image 

acquisition. Thus for the histopathological images used in this work, and to enrich the feature space, the 

RLMs were quantised to 32 grey levels prior to feature extraction; this also saves memory and reduces 

computational time. RLMs were generated for each sample image segment having directions (𝜃 = 0°, 

45°, 90° & 135°), then the previous eleven statistical features were derived. 

c) Autocovariance function 

The autocovariance function (ACF) is the autocorrelation function after subtracting the mean. It is a way 

to investigate non-randomness by looking for replication of certain patterns in an image, i.e. measuring 

dependency between pattern pixels. The ACF is defined as: 

𝜌 𝑥,𝑦 =
1

 𝑀 − 𝑥  𝑁 − 𝑦 
   𝐼 𝑖, 𝑗 − 𝜇  𝐼 𝑖 + 𝑥, 𝑗 + 𝑦 − 𝜇 

𝑁−𝑦

𝑗=1

𝑀−𝑥

𝑖=1

               (5.31) 

where  𝐼 𝑖, 𝑗  is the grey value of a M x N image, μ is the mean of the image before processing and x, y are 

the amount of shifts. After calculating the ACF for each image, the peaks K of the horizontal x and 

vertical y margins were fitted using least squares by an exponential and parabola functions; see Fig. 5.13. 

The exponential function can be defined as 

𝜌𝑑 𝑑 = 𝐾𝑑 exp −𝑆𝑑𝑑                (5.32) 

where d is the ACF projection along the x or y direction , and the total error to be minimised is 

𝐸 =   𝑙𝑛𝐾𝑥 − 𝑆𝑥𝑥𝑖 − 𝑙𝑛𝜌𝑥𝑖  
2                (5.33)

𝑖

 

had a better fit to the shape of the ACF margins, its signatures were selected as the texture features and 

the parabola features were excluded. Therefore, each sample is represented by four different parameters, 

which are the horizontal margin ACF peak (Kx) and its corresponding exponential fitting (Sx), and the 

vertical margin ACF peak (Ky) and its corresponding exponential fitting (Sy).  Table 5.4 shows the ACF 

corresponding parameters for each of the sample meningioma subtypes in Fig. 5.2. 

 

 

ACF  

parameters 

Meningioma subtype 

Fibroblastic Meningothelial Psammomatous Transitional 

Kx 0.0045 0.2106 0.0070 0.0212 

Ky 0.0077 0.2787 0.0041 0.0131 

Sx 0.0119  0.0235  0.0152  0.0282  

Sy 0.0123  0.0284  0.0151  0.0198  

Table 5.4 Autocovariance function least squares exponential fittings, here Kx and Ky, Sx and Sy represent 

the ACF peak (K) and exponential parameters (S) for the horizontal (x) and vertical (y) margins. 
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Fig. 5.13 Surface plot of normalised autocovariance functions (ACFs) referring to meningioma 

fibroblastic, meningothelial, psammomatous and transitional subtypes; respectively. The ACF horizontal 

and vertical signatures are shown in the first row beneath each ACF, whereas the second row illustrates 

their corresponding exponential (in red) and parabola (in green) least square fitting. 
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5.2.5 Features selection by correlation thresholding  

All extracted features in the combined texture measures were checked for possibly highly correlated 

features. This process assists in removing any bias towards certain features which might afterwards affect 

the classification procedure. Although each texture measure tends to characterise the examined texture 

from a different perspective, some extracted features arise to behave similar. Another advantage is the 

alleviation of the curse of dimensionality of texture features [19], which will decrease the computational 

time and memory required. 

An approach which is based on the summation of the divergence measure 𝐷𝑖  for each feature 𝑓𝑖  between 

the four different meningioma subtypes was adopted [142]. An advantage of using the divergence 

function for inspecting feature separability is that it places no prior assumption on class-conditional 

densities, and has a direct relation with Bayes error [143]. The divergence function can be defined by the 

following formula:   

𝐷𝑖 𝑓𝑖 =    
 𝜍𝑘 ,𝑓𝑖 − 𝜍𝑙,𝑓𝑖 

2
(1 + 𝜍𝑘,𝑓𝑖 + 𝜍𝑙,𝑓𝑖)

2𝜍𝑘 ,𝑓𝑖𝜍𝑙,𝑓𝑖
                (5.34) 

𝑛𝑐

𝑙>𝑘

𝑛𝑐

𝑘=1

 

where 𝑛𝑐  is the number of subtypes ─ four for this work ─ and 𝜍𝑘 ,𝑓𝑖  and 𝜍𝑙,𝑓𝑖  are the standard deviation 

of feature 𝑓𝑖  for class 𝑘 and 𝑙; respectively. 

Next the features are ranked in a descending order according to their corresponding divergence values and 

then the correlation between each pair of features is calculated. A threshold of 0.8 is set for the correlation 

values, considering correlation values above 0.8 to be highly correlated; therefore, if the absolute value of 

a certain correlation was found to be greater than the specified threshold, the feature with the lower 

divergence was excluded while the order of the remaining features is preserved. Moreover, independent 

features (i.e. correlation equal 0) are excluded as well, as they could represent simply noise. Hence, only 

the features that maximise the separability (i.e. with highest divergence) between the different subtypes 

are kept. For instance, fusing texture features extracted via CM and FD methods from the meningioma 

subtypes in Fig. 5.2 ─ listed in Table 5.5 ─ resulted in up to 37 different features, where each feature 

vector was labelled with a different index (e.g. index 1 refers to CM contrast feature acquired with 0° 

angle, index 2 for  CM contrast 45° … and so on). All CM features had their 𝛿 set to one, and the FD 

features are derived after generating an FD image for each subtype as discussed in the fractals section. 

These features are then ranked according to their divergence values as shown in Table 5.6. Finally a 

37 × 37 correlation matrix is generated and the optimum features are selected by discarding highly 

correlated (or redundant) features that exceed the set threshold, see Table 5.7. The redundant features 

have very limited contribution towards adding information and are merely considered as added noise to 

the classifier. The features in bold in Table 5.6 are the optimised ones, which are CM MP135°, CM 

IDM45°, FD Lacunarity and CM ENG45°.  
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This procedure achieved an 89% reduction in the dimensionality of the CM & FD combined feature 

vector. Additionally, examining the optimised features, it also shows that extracting CM features with 

different directions ─ 45° and 135° the best for this case ─ rather than with a specific direction; or 

deriving statistics from a generated FD image, such as lacunarity, rather than simply using the mean FD 

value alone, creates a larger bank of features which broadens the options for selecting the best features 

that would give a more effective tissue representation (i.e. assisting the classifier by providing high 

quality features).  

At the end of this stage, we will have five texture measures indicated by 𝑋𝑘  with their selected optimum 

features 𝑓𝑘𝑖 , 𝑋𝐶  is the fusion of  𝑋𝑘  in different combinations. 

𝑋𝐶 =   𝑋1 𝑓11 ,𝑓12 …  𝑓1𝑁   𝑋2 𝑓21 ,𝑓22 …  𝑓2𝑀   …𝑋𝑘 𝑓𝑘1,𝑓𝑘2 …  𝑓𝑘𝐼                 (5.35) 

            Table 5.5 Labeled grey level co-occurrence matrix and fractal  

                                              dimension texture features 

Index Texture features 

1-4 CM contrast (0°,45°,90°&135°) 

5-8 CM correlation  (0°,45°,90°&135°) 

9-12 CM energy (0°,45°,90°&135°) 

13-16 CM entropy (0°,45°,90°&135°) 

17-20 CM homogeneity (0°,45°,90°&135°) 

21-24 CM dissimilarity (0°,45°,90°&135°) 

25-28 CM inverse difference moment  (0°,45°,90°&135°) 

29-32 CM max probability  (0°,45°,90°&135°) 

33-37 FD (mean, variance, skewness, kurtosis & lacunarity ) 

 

 

Table 5.6 Sorted texture features of Table 5.5 in descending  

order according to corresponding divergence 

Sorted texture features divergence 

Index value Index value 

32 4.8247 4 0.7932 

16 4.6746 36 0.3330 

27 4.0484 29 0.2445 

11 3.9767 13 0.2268 

8 3.8932 5 0.1803 

3 3.5729 21 0.1627 

24 3.3887 26 0.0819 

19 3.3404 37 0.0797 

30 2.1359 34 0.0607 

14 1.9339 10 0.0446 

22 1.7574 2 0.0187 

6 1.5981 35 0.0131 

17 1.4529 18 0.0103 

25 1.3185 33 0.0099 

9 1.2477 31 0.0001 

1 1.0658 15 0 

20 0.8399 7 0 

28 0.8384 23 0 

12 0.8299  
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Table 5.7 Correlation matrix for the 37 different texture features listed in Table 5.6, where the optimised features are highlighted 
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5.2.6 Pattern classification technique 

A simple ─also called naïve ─ Bayesian classifier (NBC) was applied for measuring the performance. 

A NBC in supervised learning is considered optimal if all attributes are independent given the class. 

Despite the fact that this condition might not be frequent in practice, this fast and simple classifier was 

reported to perform well even with the presence of strong attribute dependence [144].  

The Bayesian decision rule classifies an observation to the class having the highest probability, for 

which the NBC can be represented in a set of discriminant functions as: 

𝑑𝑖 𝑋 =  𝑃𝑖 𝐶𝑖 𝑋 =
𝑃 𝑋 𝐶𝑖 𝑃 𝐶𝑖 

𝑃 𝑋 
 𝑖 = 1, 2,… ,𝐾                 (5.36)  

where 𝑃 𝐶𝑖 𝑋  is the a posteriori probability of assigning class i given feature vector 𝑋, 𝑃 𝑋 𝐶𝑖  is 

the probability density function (PDF) of 𝑋 within the 𝑖𝑡𝑕  class 𝐶𝑖  for a total number of K classes, 

𝑃 𝐶𝑖  and 𝑃 𝑋  are the a priori probability of class 𝐶𝑖  and feature vector 𝑋; respectively. Since 𝑃 𝑋  

does not depend on 𝐶𝑖  therefore it can be ignored, and the discriminant functions can be defined as:  

𝑑𝑖 𝑋 = log𝑃 𝑋 𝐶𝑖 + log𝑃 𝐶𝑖                  (5.37) 

The classifier assigns a feature vector 𝑋 to class 𝐶𝑖  if 𝑑𝑖 𝑋  > 𝑑𝑗  𝑋  
for all 𝑗 ≠ 𝑖 after assuming an n-

dimension (multivariate) normal PDF having the form 

𝑃 𝑋 𝐶𝑖 =
1

 2𝜋 𝑛 2  Σ𝑖 
1 2 

𝑒𝑥𝑝  −
1

2
 𝑋 − 𝜇𝑖 

𝑇Σ𝑖
−1 𝑋 − 𝜇𝑖                    (5.38) 

where Σ𝑖  and 𝜇𝑖  are the covariance matrix and mean vector of feature vector 𝑋 of class 𝐶𝑖 ;  Σ𝑖   and 

Σ𝑖
−1 are the determinant and inverse of the covariance matrix; and  𝑋 −  𝜇𝑖 

𝑇 is the transpose 

of  𝑋 −  𝜇𝑖 . Substituting the Gaussian PDF in eqn. (5.37), it is easy to show that the discriminant 

functions yields 

𝑑𝑖 𝑋 = log𝑃 𝐶𝑖  −
1

2
 log Σ𝑖 +  𝑋 − 𝜇𝑖 

𝑇Σ𝑖
−1 𝑋 − 𝜇𝑖                   (5.39)

    

The 320 samples which refer to 20 patients were equally divided into four diagnostic groups (i.e. the 

four meningioma subtypes), each group consists of 80 samples extracted from five different patients 

(16 each) diagnosed with the same meningioma tumour subtype. Since the number of image subsets is 

not small, a holdout validation approach was used for validation of classification, by randomly 

selecting four patients from each group for training and the remaining for testing.  



84 

 

 

5.3 Experimental results 

5.3.1 Colour channel selection 

The results of the Bhattacharya distance which specifies the segmentation quality for the three colour 

channels of the four meningioma subtypes are shown in Table 5.8, with the smallest (i.e. most 

separable) values in bold. All of the meningioma subtypes except the fibroblastic had a better 

segmentation quality using the blue colour channel.  

Table 5.8 Assessing classification quality for each colour channel 

Meningioma type Red  Green Blue 

Fibroblastic 0.0010 0.0082 0.0161 

Meningothelial 0.0066 0.0032 0.0020 

Psammomatous 0.1261 0.2045 0.1250 

Transitional 0.0016 0.0081 0.0011 

 

Colour channel selection was reflected in the classification accuracies for the texture measures. Table 

5.9 shows the RLM RGB colour channel classification accuracy for the four meningioma subtypes, 

with the blue channel achieving the highest overall. Similar results were obtained for the rest of the 

used texture measures, for succinctness they are not presented here.  

Table 5.9 The RGB colour channels classification accuracies  

for the RLM texture measure 

Meningioma type Red  Green Blue 

Fibroblastic 80.00% 95.00% 90.00% 

Meningothelial 95.00% 80.00% 75.00% 

Psammomatous 80.00% 90.00% 85.00% 

Transitional 70.00% 50.00% 85.00% 

Overall accuracy 81.25% 78.75% 83.75% 

 

5.3.2 Individual and combined classification accuracies 

Testing classification accuracies for each of the individual textures and in different combinations are 

as shown in Table 5.10 and 5.11; respectively. These results represent the morphological gradient 

images of the blue colour component meningioma images for all four subtypes. The ACF method was 

excluded from all subsequent analysis as it recorded a very low discrimination of 27.81%.  

When selectively combining certain texture features, the classification accuracy would increase above 

the highest achieved if an individual texture features method was used alone. For example, Table 5.10 

shows the overall classification accuracies if the extracted texture features would be used individually 

(i.e. without combining them with each other). The RLM texture feature achieved the highest overall 

accuracy by 83.75%. Yet, when fusing the texture features with each other, and in all possible 

combinations, some combination improved the overall accuracy up to 92.50% as in the GMRF & 

RLM paired features (as shown in Table 5.11). By taking the RLM classification accuracy from Table  
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                                        Table 5.10 Individual texture features testing classification  

                                        accuracy of the blue colour component of meningioma images 

Meningioma type FD RLM CM GMRF 

Fibroblastic 35.00% 90.00% 75.00% 70.00% 

Meningothelial 50.00% 75.00% 75.00% 90.00% 

Psammomatous 75.00% 85.00% 90.00% 70.00% 

Transitional 65.00% 85.00% 80.00% 80.00% 

Overall accuracy 56.25% 83.75% 80.00% 77.50% 

 

Table 5.11 Classification accuracy of extracted texture features in different combinations ranked in 

descending order 

Texture features Fibroblastic Meningothelial Psammomatous Transitional Overall accuracy 

GMRF&RLM 90.00% 95.00% 90.00% 95.00% 92.50% 

GMRF&FD&RLM 80.00% 80.00% 90.00% 100.00% 87.50% 

RLM&FD 80.00% 80.00% 90.00% 95.00% 86.25% 

GMRF&FD&CM 90.00% 75.00% 90.00% 85.00% 85.00% 

GMRF&CM 80.00% 75.00% 85.00% 85.00% 81.25% 

GMRF&RLM&CM 70.00% 90.00% 85.00% 80.00% 81.25% 

RLM&CM 60.00% 95.00% 85.00% 80.00% 80.00% 

RLM&FD&CM 80.00% 90.00% 80.00% 80.00% 80.00% 

GMRF&RLM&FD&CM 80.00% 70.00% 90.00% 80.00% 80.00% 

FD&CM 80.00% 75.00% 90.00% 70.00% 78.75% 

GMRF&FD 70.00% 70.00% 90.00% 70.00% 75.50% 

 

Table 5.12 Optimum features for the top four texture combination features in  

   Table 5.11 which improved the classification accuracy beyond the set threshold 

Texture features Index Divergence Optimum features 

GMRF&RLM (51)
d
 

5 1.8543 RLM LRE0° 

49 0.0011 GMRF sxy;5 

51 0.0008 GMRF σ 

36 0.0001 RLM SRHGLE135° 

GMRF&FD&RLM (56) 

5 1.8543 RLM LRE0° 

49 0.0011 GMRF sxy;5 

51 0.0008 GMRF σ 

36 0.0001 RLM SRHGLE135° 

52 0.0000 FD mean 

RLM&FD (49) 

5 1.8543 RLM LRE0° 

26 0.0001 RLM HGLRE45° 

36 0.0001 RLM SRHGLE135° 

45 0.0000 FD mean 

29 0.0000 RLM SRGLE0° 

GMRF&FD&CM (44) 

32 1.7274 CM MP135° 

37 1.0535 GMRF sxy;5 

39 0.8265 GMRF σ 

43 0.4548 FD kurtosis 

26 0.0722 CM IDM45° 

 

5.10 and setting it as a threshold – as it achieved the highest in case if each texture feature was used 

individually – then we can see that the first four rows in Table 5.11 for the combined texture feature 

improved the accuracy. To investigate the significance of the results, a Wilcoxon signed-rank test – a 

                                                                 
d Number between brackets indicates the total number of combined texture features before optimum feature selection  
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nonparametric alternative to the paired t-test – was applied to determine the significance between the 

texture measure combinations that improved the overall accuracy and the individual approaches. The 

test shows there is a statistical significant difference on a significance level of 0.05 (i.e. p < 0.05). 

The optimum texture features for each of the texture features combinations that improved the 

classification accuracy are ranked according to their divergence power and listed in Table 5.12. For 

completeness, the confusion matrix for the best combination (RLM & GMRF) is given in Table 5.13. 

Table 5.13 Four class meningioma classification confusion matrix for the  

combined GMRF and RLM texture measures 

Meningioma type 
Classification 

Fibroblastic Meningothelial Psammomatous Transitional 

T
ru

e 

cl
as

s 

Fibroblastic 90% 5% 0% 0% 

Meningothelial 0% 95% 0% 5% 

Psammomatous 0% 0% 90% 0% 

Transitional 10% 0% 10% 95% 

 

5.3.3 Morphological processing 

A comparison between morphological and non-morphological processing effect on the image 

classification accuracy is shown in Fig. 5.14. All MP texture measures except FD witnessed an 

increase in the overall classification accuracy. We chose to go forward with the morphological 

gradient option as the FD gave the least classification accuracy as compared to the rest of the texture 

measures. 

 

Fig. 5.14 Individual texture measures’ classification accuracy for morphologically processed (MP) and 

non-morphologically processed (NMP) of the four class meningioma images 
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5.4 Texture measures behaviour analysis 

5.4.1 Relevance to histopathological texture  

To explain why certain combinations of texture features used in this work tend to work better, we 

applied the highest three texture features that improved the overall accuracy to a set of 15 different 

generated images having jelly-bean shapes resembling in analogy the shape of the cell nuclei in the 

meningioma images (see Fig. 5.15). Theses pseudo-cell nuclei images start with a specific number of 

similar shapes in the first image, and then increase gradually by an amount equivalent to the number 

of shapes in the first image, until reaching the last image in the set. By this, we intend to see how the 

performance of each texture measure is affected as the frequency of the examined structure changes. 

Then the morphological gradient is computed for each of these images as was done with the real 

meningioma images.  

In reality, the different images of a certain type of meningioma do not necessarily have an identical 

structure or the same number of cell nuclei. Thus, it is interesting to know how the applied texture 

measures cope with this situation and how their performance is affected. Hence one can better 

understand why certain combinations might work better. 

The variation is assessed by measuring the mean (𝜇) and standard deviation (𝜍) of the extracted 

texture features and then representing them by the ratio 𝜍/𝜇 which would reflect the susceptibility of 

the examined texture measure to the increase and decrease of the frequency (i.e. denseness) of the 

examined structure. Clausi et al studied the effect of Gaussian additive noise on Gabor filters and CM 

texture features together, they showed that CM is less susceptible to noise as compared to Gabor filter 

[110]. Yet we use this ratio first to investigate the structure denseness impact on the used texture 

measures, and then in the next subsection the noise effect is presented.  

As explained in the feature extraction section, the RLM was represented by 11 features, GMRF by 7 

and the FD by 5, so the ratio 𝜍/𝜇  would represent the joint effect of all extracted features relevant to 

each texture measure after excluding highly correlated features. That is, the optimum features that 

improved the overall accuracy in Table 5.12 for GMRF, RLM and FD when combined were 

normalised and then plotted. Fig. 5.16 represents the value of the ratio 𝜍/𝜇 for each of the 15 

generated images, which is interpreted as the lower the ratio the less susceptible the texture measure. 

It is noticed that the GMRF extracted features are nearly uniform throughout the image set, with a vey 

slight increase in the variation as frequency increases. On the contrary, the RLM and FD show more 

susceptibility in low frequencies and are less susceptible in the high frequency as compared to GMRF. 

It is also shown that the RLM performs better in the low and high frequencies as compared to FD, 

while the FD is more stable in the mid range frequencies. Although the RLM and GMRF had two 

optimum features (RLM LRE0° & RLM SRHGLE135° and GMRF sxy;5 & GMRF σ), there was no 
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difference when either of the optimum features used for variability assessment; in other words, all  

gave the same results as in Fig. 5.16. 

 

 

 

 

 

Fig. 5.16 Susceptibility of RLM, GMRF and FD texture measures to 15 morphologically processed 

pseudo-cell nuclei images with increasing shape frequency.  

5.4.2 Simulation of noise impact on extracted features 

To study the impact of noise on the meningioma images, distortion having an effect resembling fine 

cracks or craquelures which appear on old paintings was applied to 15 pseudo-cell nuclei images (see 
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Fig. 5.15 The first row is the initial and final images in the 15 

generated pseudo-cell nuclei images to test texture measures 

susceptibility to variation in shape frequency, the second row is 

the corresponding distorted images. 
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Fig. 5.15). As the most probable noise to affect the histopathological images in the process of 

preparation is the cracks in the biopsy sample which is most obvious as the white regions in the 

psammomatous meningioma images in Fig. 5.2. A 1-D horizontal cross section in a pseudo-cell nuclei 

image before and after noise distortion is shown in Fig. 5.17.  

Although the applied morphological gradient eliminates the background – including the white cracks 

in the image sample (see upper right corner of Fig. 5.5) – to extract the general cell nuclei structure, 

these cracks can still alter the general shape that a certain type of meningioma cell nuclei should take. 

Analysing the susceptibility of the texture measures as shown in Fig. 5.18, the GMRF was the least 

affected by the added noise as it gave nearly a uniform response throughout all images. The RLM and 

FD behaved oppositely to each other in response to noise in a monotonically decreasing/increasing 

fashion, respectively.  In a way, RLM is less susceptible to noise in high shape frequency of 

occurrence; vice versa for FD. Therefore the response of each texture measure somehow depends on 

the structure that the noise affects. For example if the noise occurs in dense image structures, the 

RLM measure could produce a more reliable estimate as compared to the other measures. We can also 

see that roughly similar noise susceptance is produced in between image 7 and 8 for all three texture 

measures. 

 

                           Fig. 5.17 One dimensional horizontal gray-level profile along the first pseudo- 

             cell nuclei image, the dotted line indicates the profile of the effect of added  

             craquelures distortion. 
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Fig. 5.18 Effect of noise distortion on texture measures applied to images in Fig. 5.2. 

 

5.5 Discussion  

The main objective was to improve meningioma histopathological image classification accuracy to 

overcome inter-and- intra-observer variations in human reported diagnosis. The technique exploits the 

physiological structure of the cell nuclei with five different texture measures, and tries to find the best 

combination that maximises the difference in-between the meningioma subtypes.  

It was shown that the choice of colour channel can increase or decrease the classification accuracy, in 

terms of which better defines the borders of the region of interest – the cell nuclei in our case – from 

the background. The quality of segmentation performed on a sample image from each subtype 

favoured the blue colour channel for three of the four subtypes.  This is due to the dyes used in 

staining the meningioma biopsies which gave the cell nuclei a purple colour and the background (i.e. 

cytoplasm) a pink colour, where the better segmentation performance can be interpreted as the 

dominance of blue component in the purple colour which consists mainly of mixtures of blue and red.  

Usually the fibroblastic subtype is harder to differentiate from other subtypes [145]; furthermore, the 

relatively small size and the faint colour of some of the fibroblastic cell-nuclei as compared to the 

other subtypes contributed towards giving the red colour channel a better separability. Yet, the 

subtypes overall classification results showed that the blue colour channel was the best for all 

subtypes. 

Also it was shown that combining more than one texture measure instead of using just one might 

improve the overall accuracy. Different texture measure tends to extract different features each 

capturing alternative characteristics of the examined structure. The two model and statistical-based 
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texture measures (GMRF and RLM) improved the overall accuracy up to 92.50% with none of the 

classified meningioma subtypes achieving below 90.00%. As indicated in the confusion matrix, we 

see that all misclassified subtypes are related only to a single other subtype (e.g. fibroblastic and 

psammomatous subtypes were always misclassified as transitional). The misclassification occurs 

mainly due to non-homogeneity of the cell nuclei structure for the prepared biopsies. Another reason 

is in the subdivision of each of the 1024x1024 pixel images to four quadrants (i.e. subsets), the shape 

of the structure in some of the four 512x512 pixel quadrants and with the possible presence of some 

biopsy preparation cracks in that quadrant, might not be sufficient to capture the original subtype cell-

nuclei shape, and hence be more probable to be misclassified. In addition, the reduction in the 

dimensionality of the feature vector was essential in improving the classification accuracies as well. 

Only four out of the 51 features which resulted from the GMRF & RLM combination was required, 

and five features from the each of the GMRF&FD&RLM,  RLM&FD and GMRF&FD&CM 

combinations which initially had 56, 49, and 44 features; respectively. 

Nevertheless, using a combination of multiple texture measure does not necessarily guarantee a better 

accuracy, even with the removal of highly correlated features. All four texture measures combined – 

appearing in the ninth row of Table 5.11 – gave an 80%, degrading the overall classification accuracy 

below the 83.75% set threshold. Meaning fewer (paired) texture measures could best characterises the 

examined texture and produce far better classification results in a shorter CPU processing time.  

Moreover, classification results suggest that taking the morphological gradient for the 

histopathological images would serve most texture measures’ capability to capture tissue 

characteristics, yet the stability of the texture measures’ response varies depending on the examined 

structure shape denseness. By studying the variation of the texture measure features as the number of 

cell-nuclei increases, the GMRF was nearly uniform, while the RLM and FD performed better in the 

high frequencies. That is, in the GMRF and RLM combined, the RLM is less affected (i.e. the 

variation of the normalised features is less as compared to GMRF features) if the number of cell-

nuclei increase suddenly in on of the examined samples above the expected average, which will assist 

in classifying it correctly.  In a way, they compensate for each others weaknesses.  

Varying amounts and types of noise is inevitable in medical imaging which will have some effect on 

used texture measures [2]. Fine cracks in the tissue biopsies are a major source of noise that can affect 

histopathological images. The texture measures’ response to additive texture distortion noise while 

varying cell-nuclei shape densities was studied. The GMRF was the least affected, yet the RLM and 

FD performed better in high and low shape frequency; respectively. 

A limitation of the proposed meningioma classification technique is that segmentation separability 

assessment is required in order to select the optimum colour channel, yet we need this process only 

once (i.e. before training).  
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5.6 Conclusion 

A technique for histopathological meningioma tumour classification based on texture measures 

combination has been proposed in this chapter. The morphological gradient of the RGB colour 

channel that best discriminates the cell-nuclei from the cytoplasm background is selected, and then 

feature extraction is performed by four statistical and model-based texture measures for 

discrimination using a Bayesian classifier. The pre-processing phase represented by the appropriate 

colour channel selection and morphological processing proved it was necessary for increasing texture 

feature separability, and hence can improve classification accuracy. 

It can be concluded that certain selected texture measures play a complementary role to each other in 

the process of quantitative texture characterisation. In other words, a certain texture measure can 

represent a pattern better than another depending on the region of interest frequency of occurrence and 

noise in the examined structure. This also applies to certain combinations which might outperform 

other texture measure fusions. However, combining more than two texture measure would not 

necessarily give a better accuracy even with the removal of highly correlated features. This will 

increase feature complexity, hence having a negative effect on the classifiers performance. It was 

found that the combination of the GMRF and RLM texture measures are the best for characterizing 

meningioma subtypes of grade I, these two measures outperformed other measures in the study 

individually and combined. Furthermore, it would be interesting to test the compatibility of the 

suggested meningioma classification approach to discern in-between subtypes and/or grades of other 

similar histopathological diseases. 
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Chapter 6 

MULTIRESOLUTION VIA WAVELET TRANSFORM AND GABOR FILTERS 

Preview 

With the heterogeneous or non-stationary nature of medical texture, using a single resolution 

approach for optimum classification might not suffice. In contrast a multiresolution wavelet packet 

analysis approach can decompose the input signal into a set of frequency subbands giving the 

opportunity to characterise the texture structure at the appropriate frequency channel. We propose an 

adaptive best bases algorithm for optimal bases selection for meningioma histopathological images, 

applying the fractal dimension (FD) as the bases selection criterion in a tree-structured manner. 

Thereby, the most significant subband that better identifies texture discontinuities will only be chosen 

for further decomposition, and its fractal signature would represent the extracted feature vector for 

classification. The best basis selection using the FD outperformed the energy based selection 

approach, achieving an overall classification accuracy of 91.25% as compared to 83.44% and 73.75% 

for the co-occurrence matrix and energy texture signatures; respectively. Another multiresolution 

approach was used as well, applying this time Gabor filters for feature extraction. The Gabor filter 

energy output of each magnitude response was combined with four other mono-resolution texture 

signatures ─ half model based and the other half statistical based ─ with and without cell nuclei 

segmentation. The highest classification accuracy of 95.00% was reached when combining the Gabor 

filters’ energy and the meningioma subimage fractal signature as a feature vector without performing 

any prior segmentation. This shows that the use of the FD with wavelet packet transform and Gabor 

filters assists in achieving an optimum classification. 

6.1 Introduction 

The main concern in texture analysis is how to capture distinctive characteristics that will maximise 

the difference in-between the analysed images and subsequently facilitate the pattern classifier’s 

mission. Each feature extraction method has its own unique trend for detecting discontinuities in 

image texture, yet its efficiency is determined by how they formulate the relationship between 

primary image elements. 

Feature extraction can be categorised into single (or mono) and multiple resolution approaches. 

Despite the simplicity that mono-resolution texture analysis techniques (e.g. co-occurrences, run-

length, autocorrelation…etc) provide, a limitation resides in their characterisation of texture from a 

single perspective ─ at a certain scale or fixed resolution level ─ discarding other possibilities which 

might have a better discriminative capability at a different scale.  A multiresolution analysis 
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decomposes the input signal into a set of frequency bands to investigate a particular object at various 

spatial-frequency scales. This was initially inspired from how the human visual system (HVS) 

discerns objects, and multiresolution texture analysis techniques for pattern recognition applications 

are benchmarked according to their ability to mimic the HVS. The area of the brain responsible of 

processing visual stimuli is called the visual cortex which is located at the lower rear of the brain. 

Neurons in this area of the HVS respond to visual information through a set of mechanisms, each of 

which is tuned to a specific spatial frequency and orientation [146]. Psychophysiological research 

findings showed that the visual cortex of the human visual system can be modeled as a set of tuned 

independent channels with specific frequency and orientation [11]. There are a number of studies in 

the literature that used band-pass filter banks for mathematical modeling of visual cortex cells [12, 

147-150]. The robustness and efficiency of the HVS in texture discrimination motivated many 

researchers in modeling human perception for improving computerised pattern recognition 

techniques; especially for texture discrimination and segmentation [13, 14, 151-153]. The feasibility 

of multiresolution models using wavelet transform coefficients and Gabor filters has then attracted 

considerable attention for many biomedical applications related to medical imaging. A review on 

applications of wavelets in biomedical image processing can be found in [154, 155], and a coverage 

of Gabor filter utilisation in various medical imaging modalities is presented in [156].  

Medical texture is known to be heterogeneous, and a varying degree of texture heterogeneity exists 

whether the acquisition of the medical image was performed on a micro-scale (e.g. imaging by 

computed tomography (CT), magnetic resonance (MR), ultrasound, etc) having a tissue level view 

composed mainly from vessels and surrounding fluids, or on a macro-scale (e.g. microscopic images) 

where the texture is defined by the characteristics of the organ cells.  Textures of the latter are 

considered less homogeneous due to the relative large size of the textons ─ the principal elements that 

form the texture─ which is represented by the cells in this case. The non-stationary nature of medical 

image texture hinders the ability for an effective automated classification from a mono-resolution 

viewpoint, and image pre-processing prior to feature extraction might not be sufficient. On the other 

hand, viewing texture from a multiresolution perspective can filter out irrelevant features and 

distorting noise while simultaneously giving more emphasis on the features which contribute to better 

subtype distinction. Techniques such as wavelet transform coefficients and Gabor filters can also 

break down textures’ statistical complexity to distinguish between different texture regions, and their 

high sensitivity to local features facilitates the processes of preattentive or subtle texture 

discrimination as well [13]. Furthermore, according to the uncertainty principle, the wavelet transform 

and Gabor function can achieve an optimal joint spatial-frequency localisation (i.e. simultaneously 

maintain a good boundary accuracy and frequency response) [157].  

Wavelet packets (WPs) are a generalised framework of the multiresolution analysis and comprise all 

possible combination of subbands decomposition. However, it is unwieldy to use all frequency 
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subbands for texture characterisation as not all of them have the same discriminating power, and 

inclusion of weak subbands (i.e. subbands which do not effectively represent the texture structure) 

would have a negative impact on the classifier’s performance. Whereas using an exhaustive search 

would be computationally expensive as the number of decomposition levels grows higher. Therefore 

an adaptive approach is required for selection of the basis with prominent discriminating power. The 

selection criteria can be done in two ways, either by selecting the best bases from a library of WPs or 

in a tree-structured approach. Coifman and Wickerhauser proposed to choose the best basis which 

gave the most compact representation after transforming the signal into different WP bases [158]. The 

entropy was used as the cost function for selection of the decomposition levels, where the subband 

that minimises the cost function, from a comparison between the nodes and its leaves in the WP 

decomposition tree, was considered the optimal choice. By extending the additive cost function in 

[158] to an arithmetic hence a geometric mean, Dansereau et al proposed a generalised Rényi entropy 

for best basis search [159], allowing for different moment orders and inclusion of possible incomplete 

probabilities in the search as well. Saito et al estimated the probability density of each class in each 

coordinate in the WP and local trigonometric bases, then applied the Kullback–Leibler divergence 

(relative entropy) as a distance measure among the densities for selection of the most M 

discriminating coordinates [160]. While Rajpoot compared the discrimination energy between the 

subbands by using four different distance metrics [161]. The Kullback-Leibler divergence, Jensen-

Shannon divergence, Euclidean distance, and Hellinger distance were used to asses the dissimilarities 

in-between the WPs for selection of the most discriminant bases. Others excluded the set of frequency 

subbands whose energy signatures showed a degree of dependence identified by mutual information 

[162]. Another related work was based on best clustering bases, wherein clustering basis functions are 

selected according to their ability to separate the fMRI time series into activated and non-activated 

clusters [163]. The basis that concentrates the most discriminatory power on a small number of basis 

functions is selected.On the other hand, a tree-structured technique for best basis selection was 

proposed by Chang and Kuo, where only the subbands with the highest energy are selected for further 

decomposition [164]. An averaged l1 – norm was used as the energy function for location of the 

dominant frequency channels, and decomposition is stopped if subbands’ energy is less than a factor 

of the maximum energy at that resolution level. Acharyya and Kundu used M-band WP 

decomposition, giving 𝑀2𝐽  possible bases for each level J. This approach results in a large number of 

subbands, therefore they adopted the tree-structure approach by decomposing the subbands whose 

energy value are larger by a factor than the total energy of all subbands at the same resolution [165]. 

While the work in [166] maximised the Fisher’s distance in-between the tree-structured decomposed 

subbands. 

In this work a different approach for best basis selection for the processes of histopathological 

meningioma classification is proposed. The fractal dimension (FD) is used for guiding the subband 
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tree-structure decomposition instead of energy which is highly dependent on the subband intensity. 

The motivation to use such texture measure, besides its scale invariance or the capability to 

investigate self-similarity, is its surface roughness estimation that can be used to detect variance in 

cell nucleus structure orientation and size for differentiating between meningioma subtypes. Fractal 

analysis for the purpose of tumour discrimination at  a micro-scale was proven to be successful in 

numerous studies related to various medical imaging modalities as in CT [1], X-ray [83],MR [167], 

and US [80]. This work takes advantage of FD in diagnosing medical texture, and applies it at a 

macro-scale for images acquired by the microscopy modality. Also with the large size of the 

meningioma images (512 x 512 pixels), the tree-structure was favoured to reduce computational time 

to explore the full texture characteristics at deeper levels, as an overcomplete dyadic wavelet 

transform was used holding the size of the transformed image to be the same as the original image 

without any down-sampling.  

Features are derived from wavelet and Gabor coefficients as they cannot be used explicitly for texture 

analysis due to their high variability within the analysed texture. Texture signatures such as entropy or 

local energy [168, 169], histograms and second order statistic derived from co-occurrence matrix 

[170, 171] were mostly used to characterise the different spatial-frequency decompositions to provide 

a better localisation. Also model-based signatures such as fractals [80] and Markov random fields 

[172, 173] where used as well. In this work the FD is not only used as a subband feature vector 

(signature) but also as a criterion for best bases selection in the wavelet tree-structured decomposition. 

The feature vector will consist of FD’s of all selected subbands according to their fractal 

discriminating power (i.e. surface roughness). 

Finally the performance of another multiresolution technique is assessed in classifying the same data 

set through a set of Gabor filter banks. The co-occurrence and run-length matrices are used as 

statistical-based methods, and in addition to model-based Gaussian Markov random fields (GMRF) 

and FD, each are combined with the output energy of the Gabor filters. 

6.2 Foundation of wavelet multiresolution representation 

Multiresolution or multi-scale analysis is a fine to coarse analysis strategy for which the signal details 

are decomposed and examined at different levels of resolution. In terms of pattern recognition, large 

structures or high contrast are best localised at low resolution levels, while higher levels would be 

more appropriate for small size or low contrast objects [86]. Therefore multiresolution processing 

gives the advantage of analysing both small and large object characteristics in a single image at 

several resolutions. The decomposition of the image into multiple resolutions based on small basis 

functions of varying frequency and limited duration called wavelets was first introduced by Mallat 

[174], which is also discussed in detail in [175-177]. The wavelet analysis approach can be regarded 
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as the scale j and translation k of a basic function (called a mother wavelet) to cover the time-

frequency domain.  

A one-dimensional (1-D) decomposition of a function 𝑓 𝑥 ∈  𝐿2 ℝ  relative to scaling 𝜑 𝑥  and 

wavelet function 𝜓 𝑥 , where 𝜑𝑗 ,𝑘 𝑥 = 2𝑗 2 𝜑 2𝑗𝑥 − 𝑘  and 𝜓𝑗 ,𝑘 𝑥 = 2𝑗 2 𝜓 2𝑗𝑥 − 𝑘  for all 

𝑗,𝑘 ∈ ℞ and 𝜑 𝑥  and  𝜓 𝑥 ∈  𝐿2 ℝ , can be written in the following expansion 

𝑓 𝑥 =   𝑐𝑗0
 𝑘  𝜑𝑗0 ,𝑘 𝑥 

𝑘

+   𝑑𝑗  𝑘 𝜓𝑗 ,𝑘 𝑥 

𝑘

∞

𝑗=𝑗0

                 (6.1) 

where j0 is an arbitrary starting scale and the expansion coefficients 𝑐𝑗0
 𝑘  and 𝑑𝑗  𝑘  are determined 

by 

𝑐𝑗0
 𝑘 =   𝑓 𝑥 ,𝜑𝑗0 ,𝑘 𝑥  =  𝑓 𝑥 𝜑𝑗0 ,𝑘 𝑥  𝑑𝑥               (6.2) 

𝑑𝑗  𝑘 =   𝑓 𝑥 ,𝜓𝑗 ,𝑘 𝑥  =  𝑓(𝑥)𝜓𝑗 ,𝑘 𝑥  𝑑𝑥                  (6.3) 

 𝜑 𝑥 ,𝜓 𝑥   are mutually orthogonal functions and <,> is the inner product operator. 𝜑 𝑡  satisfies 

the dilation equation 𝜑 𝑥 =  2 𝑕0 𝑘  𝜑 2𝑥 − 𝑘 𝑘  with 𝑕0 𝑘  denoting scaling filter, while  𝜓 𝑥  

satisfies the wavelet equation  𝜓 𝑥 =  2 𝑕1 𝑘  𝜓 2𝑥 − 𝑘 𝑘  with 𝑕1 𝑘  denoting wavelet filter. 

These two filters need to satisfy certain conditions for the set of basis wavelet functions to be unique 

and orthonormal [174, 176, 178].  

For image processing, the 1-D wavelet basis functions can be easily expanded to 2-D by the product 

of two 1-D wavelet basis functions (scaling function and corresponding wavelet) along the horizontal 

and vertical directions; producing one separable scaling function and three separable directionally 

sensitive wavelets. 

𝜑 𝑥,𝑦 = 𝜑 𝑥 𝜑 𝑦                     (6.4) 

𝜓𝐻 𝑥,𝑦 = 𝜓 𝑥 𝜑 𝑦                  (6.5) 

𝜓𝑉 𝑥,𝑦 = 𝜑 𝑥 𝜓 𝑦                  (6.6) 

𝜓𝐷 𝑥,𝑦 = 𝜓 𝑥 𝜓 𝑦                  (6.7) 

Then the discrete wavelet transform for a function 𝑓 𝑥,𝑦  of size  𝑀 × 𝑁 can be represented as 

follows [86] 

𝑊𝜑 𝑗0 ,𝑚,𝑛 =
1

 𝑀𝑁
  𝑓 𝑥,𝑦 𝜑𝑗0 ,𝑚 ,𝑛 𝑥,𝑦 

𝑁−1

𝑦=0

𝑀−1

𝑥=0

                 (6.8) 

𝑊𝜓
𝑖  𝑗,𝑚,𝑛 =

1

 𝑀𝑁
  𝑓 𝑥,𝑦  𝜓𝑗 ,𝑚 ,𝑛

𝑖  𝑥,𝑦 

𝑁−1

𝑦=0

𝑀−1

𝑥=0

            𝑖 =  𝐻,𝑉,𝐷                  (6.9) 
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where 𝑊𝜑 𝑗0 ,𝑚, 𝑛  defines an approximation of 𝑓 𝑥, 𝑦  at scale j0, and 𝑊𝜓
𝑖  𝑗,𝑚,𝑛  coefficients add 

horizontal, vertical and diagonal details for scales 𝑗 ≥ 𝑗0. A 2-D decomposition filter bank of a two 

band (dyadic) wavelet system is shown in Fig. 6.1.  

As dyadic wavelet transform depends mainly on the scaling 𝑕0 𝑘  and wavelet 𝑕1 𝑘  filters for image 

decomposition, one does not need to express the 𝜑 𝑥  and 𝜓 𝑦  in their explicit form. The 

decomposition process can be viewed as passing the signal through a pair of lowpass 𝐿 and highpass 

𝐻 filters, also known as quadrature mirror filters, having impulse responses 𝑕 0 𝑘  and 𝑕 1 𝑘 , and 

then downsampling by dropping every other sample. The impulse responses of 𝐿 and 𝐻 are defined as  

𝑕 0 𝑘 = 𝑕1 −𝑘  ,𝑕 1 𝑘 = 𝑕1 −𝑘       (6.10) 

For signal reconstruction the operation is reversed, through upsampling the decomposed signals (i.e. 

subbands) by inserting zeros between neighbouring samples before filtering by 𝑕0 𝑘  and 𝑕1 𝑘  and 

finally adding the filtered signals together. The decomposition is performed recursively to the output 

of the lowpass filter 𝑕 0, which leads to a pyramid-structure decomposition or known as conventional 

wavelet transform. Hence, given the scaling and translation parameters, j and k, the corresponding 2-

D filter coefficients can be expressed as in (6.11) with subscripts indicating the low and high pass 

filtering characteristics in the x and y directions. 

𝑕𝐿𝐿 𝑗,𝑘 = 𝑕0 𝑗 𝑕0 𝑘 𝑕𝐻𝐿 𝑗,𝑘 = 𝑕1 𝑗 𝑕1 𝑘 

𝑕𝐿𝐻 𝑗,𝑘 = 𝑕0 𝑗 𝑕1 𝑘 𝑕𝐻𝐻 𝑗, 𝑘 = 𝑕1 𝑗 𝑕1 𝑘 
 (6.11) 

By decomposing the signal’s approximation coefficients as well, the wavelet transform can be 

extended in the middle and high frequency channels (LH, HL and HH bands) and not only in the low 

frequency channels (LL-band), providing a better partitioning of the spatial-frequency domain, which 

is known as the wavelet packet (WP) transform [158]. As features of some textures would be more 

prevalent in the higher frequency channels, WPs would give the high frequency structures in an image 

an equal opportunity for investigation of possible interesting information. 

We are concerned more with a better representation of the texture characteristics at each 

decomposition; therefore, this work presents an overcomplete tree-structured wavelet representation 

by omitting image down-sampling operation at each decomposition step, holding the size of the 

transformed image the same as the original image. 



99 

 

 

 

 

 

 

On the other hand, signal transform methods such as wavelet and Fourier transforms, are in a sense 

similar in the localisation of their basis functions in the frequency domain, yet the simultaneous 

localisation in the time domain gives an advantage for the former. A joint spatial-frequency 

localisation will give a sparse representation of the image which is useful in feature detection, 

compression and noise removal [179, 180]. This is related to the way the basis functions of the two 

transforms cover the spatial-frequency domain. In order to achieve a joint localisation for the Fourier 

transform case, a constant size translating window is used as an envelope for a range of frequencies. 

In windowed Fourier transform, the sine and cosine functions are truncated to fit into a square wave 

(i.e. the fixed-size window), causing for a constant resolution analysis for all frequencies, which will 

result in poor spatial localisation as the temporal information has been approximated in the 

transformation process. In contrast wavelet transform ─ under the assumption of orthogonal or 

biorthogonal scaling functions─ uses a limited duration family of functions (i.e. wavelets), where the 

size of the window can be varied to accommodate for the condition of the analysed frequency; hence a 

better localisation can be achieved in the spatial-frequency domain.  

Achieving a good spatial-frequency localisation depends on understanding the relation between the 

two domains. It is known that the time and frequency are inversely related according to the 

Heisenberg uncertainty principle. This means that more time domain precision in analysing a certain 

h1 ↓2 

h0 ↓2 

h1 ↓2 

h0 ↓2 

h1 ↓2 

h0 ↓2 

𝑊𝜑 𝑗,𝑚,𝑛  
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𝐷 𝑗,𝑚,𝑛  

𝑊𝜓
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jth resolution level 

Fig. 6.1 Decomposition filter bank for a 2-D wavelet transform. 
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function will be at the expense of frequency precision, and vice versa. Thus having a varying size and 

constant area window which adapts to the range of the analysed frequencies could manage the trade-

off. This is illustrated graphically in Fig. 6.2 using tiles, also called Heisenberg boxes, which show the 

concentration of the basis functions’ energy [86]. Orthonormal basis functions are assumed, therefore 

time-frequency tiling is characterised by non-overlapping tiles. Time-frequency tiling using a delta 

function basis as in Fig. 6.2(a) identifies the time of sampling occurrence but provides no frequency 

information. Inversely, the Fourier transform in Fig. 6.2(b) provides the frequency information but 

lacks the time resolution. The windowed Fourier transform decomposes the signal into a set of equal 

size frequency intervals resulting in constant frequency and time resolution, as shown in Fig. 6.2(c). 

Finally, the wavelet transform has varying size frequency intervals that can pack all oscillations of the 

basis wavelet into a narrow interval for high frequencies and into wide intervals for low frequencies, 

shown in Fig. 6.2(d). This way non-periodic and/or non-stationary functions whose frequencies vary 

in time can be more appropriately analysed. As short or narrow basis functions are required for 

detection of signal discontinuities, detailed frequency analysis requires long or wide basis functions. 

The wavelet transform using a Daubechies wavelet basis functions for example can represent both 

situations by having narrow high and wide low frequencies simultaneously, see Fig. 6.3(b).  
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Fig. 6.2 Time-frequency tiling for (a) sampled data, (b) Fourier 

transform, (c) windowed Fourier transform, and (d) wavelet transform. 
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6.3 Image pre-processing 

All four meningioma images were first segmented prior to feature extraction by applying the 

technique used in the previous chapter (see Fig. 6.4 and its corresponding first level decomposition in 

Fig. 6.5). This is done by investigating the separability of the RGB colour channels before selecting 

the appropriate colour channel for cell nuclei segmentation, followed by applying the morphological 

gradient to extract the general structure and elimination of any possible tissue cracks that may 

occurred during biopsy preparation procedure. This assists in highlighting the size and orientation of 

the cell nuclei structure, which would reflect on the quality of the texture signatures to be extracted 

from each subband. 

6.4 Subband selection optimisation 

A 8-tap Daubechies filter [181] (see Table 6.1) was used in obtaining the WPs where the 

decomposition was  implemented in a tree structure approach [164], expanding only the basis having 

the most significant signature (i.e. having relatively more information). This approach was adopted to 

investigate the possibility of higher frequency channels to provide significant information as 

compared to the classical low-frequency decomposition approach for the segmented histopathological 

images. Fig. 6.6 supports this trend, in which the middle and high wavelets subbands for the first level 

of decomposition have stronger Fourier spectrum as compared to the low frequency channel, 

especially for the first level of resolution. 

 

  

 

 

  

  

 

 

 

 

 

 

  

   

  

    

 

 

 

 

 

 

 

 

 

 

 

 

 

T
im

e 

Frequency 

(a) 

T
im

e 

Frequency 

(b) 

Fig. 6.3 Comparing tiling covering of the time-frequency domain using (a) 

sinusoidal basis function for windowed Fourier transform, and (b) Daubechies 

wavelet basis functions for wavelet transform.  
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Fig. 6.4 Upper row (left-right) is the meningioma fibroblastic, meningothelial, 

psammomatous and transitional subtypes. Second row is the corresponding grey-level 

segmented cell nuclei general structure. 

Fig. 6.5 First level of decomposition showing the LL, LH, HL and HH bands for (a) fibroblastic, (b) 

meningothelial, (c) psammomatous and (d) transitional subtypes; respectively. 

(a) (b) 

(c) (d) 
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Table 6.1 Wavelet transform 8-tap  

Daubechies filter coefficients 

Coefficient Value 

h(0) -0.01059740 

h(1)  0.03288301 

h(2) 0.03084138 

h(3) -0.18703481 

h(4) -0.02798376 

h(5) 0.63088076 

h(6) 0.71484657 

h(7) 0.23037781 

 

    

    

Fig. 6.6 Fibroblastic meningioma power spectrum of LL, LH, HL and HH wavelet bands for  

the 1
st
 (upper row) and 3

rd
 (lower row) level of resolution. 

 

6.4.1 Fractal signature approach 

The wavelet subband selection process was based upon exploiting possible fractal characteristics that 

images of meningioma cell nuclei may possess. Depending on the size and orientation of the cell 

nuclei, each subtype has a distinct structure which can be approximately self-similar for a number of 

scales ─ see the twirls in the bottom right of Fig. 6.5. As the case for most biological structures which 

exhibit fractal characteristics, they are constraint to a limited number of self-similar scales and not to 

infinity, and the zoomed-in scales are not identical to the mother structure but a random 

approximation. 

The FD signatures are estimated for all subbands at each level of WP decomposition, where the FD is 

computed on a pixel by pixel basis to producing a FD image where each pixel has its own FD value. 

Features at image boundaries are computed after assuming the image is mirror-like continually 

extended in both directions.Then the mean would represent the FD of the subband, which would give 

a more reliable estimation as compared if the FD was directly estimated from the whole subband; e.g. 

a relatively large crack in a biopsy might have a negative effect on the accuracy of the estimated FD, 

while generating an FD image and then averaging all FD pixels would mitigate this effect. Finally the 
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subband with the highest FD is selected for further decomposition. For example, Table 6.2 lists the 

estimated FD values for each subband at each decomposition level, where the WHH subband which had 

the highest FD value for first resolution level was the chosen basis for the second decomposition 

level, and so on. The fractal map representing the FD signature of the tree-structured wavelet 

decomposition defined in the spatial-frequency domain and its corresponding quad-tree structure for 

the first three decomposition level is shown in Fig. 6.7. Although the applied multiresolution 

technique is similar to the one used by Chang and Kuo [164], the FD instead of the energy is used to 

guide the direction of tree expansion, and the classification results will show the feasibility of this 

approach.  

At the end of the feature extraction stage, a feature vector 𝑊𝐹𝐷 =  𝑓1
𝑖 ,𝑓2

𝑖 ,…𝑓𝑗
𝑖  consisting of all 

selected subbands FD signatures f to a certain decomposition level j will be produced for each of the 

meningioma subimages i. In order to save processing time and when the difference in-between the FD 

signatures become less significant, a designated threshold 𝜆 would reduce the dimensionality of the 

extracted feature vector. By that, unnecessary decompositions are avoided which could have a 

negative effect on the classifier’s performance. This can be expressed as if the condition  ∀ 𝑓𝑗
𝑖  ∈

𝑊𝐹𝐷 ≤ 𝜆  is satisfied, then the decomposition should terminate. Therefore, the FD signatures’ 

absolute difference 𝐷𝑓 =  𝑓1
𝑗
− 𝑓2

𝑗
  between all four wavelets subbands (WLL, WLH, WHL and WHH) for 

a certain resolution level needs to be less than or equal to 𝜆 (empirically choosing 𝜆 = 0.05 for 

psammomatous and 0.012 for the other subtypes) before decomposition terminates. The best basis 

selection processes can be summarised in the following pseudo code: 

FOR each meningioma subtype 

  FOR each filtered subband W {  

   compute the FD signature for each subband; 

   find the absolute difference between all FD signatures; 

   IF all subbands FD signatures ≤ set threshold THEN 

terminate; 

   ELSE choose the band with the highest FD signature; 

   ENDIF 

 } 

   ENDFOR 

ENDFOR 
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Table 6.2 Fractal dimensions for each corresponding fibroblastic wavelet subband 

Resolution WLL WLH WHL WHH  Resolution WLL WLH WHL WHH 

level 1 2.5038 2.6797 2.7105 2.7897 level 1 2.6217 2.7663 2.7896 2.8514 

level 2 2.9346 2.8918 2.8994 2.8239 level 2 2.9578 2.9262 2.9311 2.8752 

level 3 2.9585 2.9655 2.9669 2.9722 level 3 2.9737 2.9781 2.9784 2.9821 

level 4 2.9877 2.9857 2.9860 2.9838 level 4 2.9922 2.9910 2.9910 2.9895 

level 5 2.9930 2.9937 2.9939 2.9945 level 5 2.9956 2.9961 2.9961 2.9965 

level 6 2.9975 2.9972 2.9973 2.9970 level 6 2.9984 2.9983 2.9982 2.9981 

level 7 2.9986 2.9987 2.9987 2.9988 level 7 2.9991 2.9992 2.9992 2.9993 

level 8 2.9994 2.9994 2.9994 2.9994 level 8 2.9997 2.9996 2.9996 2.9996 

       

Resolution WLL WLH WHL WHH   Resolution WLL WLH WHL WHH 

level 1 2.6897 2.8352 2.8734 2.9163 level 1 2.5333 2.7041 2.7289 2.8068 

level 2 2.9767 2.9592 2.9648 2.9315 level 2 2.9428 2.9032 2.9081 2.8375 

level 3 2.9853 2.9878 2.9887 2.9907 level 3 2.9643 2.9701 2.9706 2.9756 

level 4 2.9958 2.9952 2.9954 2.9947 level 4 2.9893 2.9876 2.9877 2.9857 

level 5 2.9976 2.9979 2.9979 2.9982 level 5 2.9939 2.9946 2.9946 2.9952 

level 6 2.9991 2.9991 2.9991 2.9990 level 6 2.9978 2.9976 2.9976 2.9974 

level 7 2.9995 2.9996 2.9996 2.9996 level 7 2.9988 2.9989 2.9989 2.9990 

level 8 2.9998 2.9998 2.9998 2.9998 level 8 2.9995 2.9995 2.9995 2.9995 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 6.7 (a) Wavelet quad-tree structure for first three 

decomposition levels of transitional subtype appearing in Fig. 6.5 

and (b) its corresponding channel decomposition. 
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6.4.2 Other texture signatures 

For the purpose of comparison, the performance of the FD would be benchmarked against other 

commonly used texture signatures for subband discriminant power assessment. These methods use the 

highest energy among the subbands for WPs expansion. Some of the most used methods for 

extraction of subbands texture signatures is the energy 𝐸𝑘  , k =1, 2 in the form of l1-norm [164] and l2-

norm [182] as in (6.12). 

 𝐸𝑘 =
1

𝑀𝑁
   𝐼𝑓 𝑥, 𝑦  

𝑘
𝑁−1

𝑥=0

𝑀−1

𝑦=0

                    (6.12) 

Here 𝑀 and 𝑁 are the size of the subband intensity 𝐼𝑓 𝑥, 𝑦 . Also the co-occurrence matrix (CM) 

[170] 𝐶𝜃 ,𝛿   𝑖, 𝑗  representing the joint probability of grey-level pixel 𝑖 and 𝑗, within a certain distance 

𝛿 and orientation 𝜃. Then the unnormalised entry 𝐶𝜃 ,𝛿  can also be expressed in an alternative way to 

the CM definition in chapter 5 as 

𝐶𝜃 ,𝛿 𝑖, 𝑗 = #   𝑥1 ,𝑦1 ,  𝑥2 ,𝑦2  ∈   𝑀 × 𝑁 ×   𝑀 × 𝑁 : 𝐼𝑓 𝑥1 ,𝑦1 = 𝑖, 𝐼𝑓 𝑥2 ,𝑦2 = 𝑗 , where 

𝑥1 − 𝑥2 = 𝛿𝑐𝑜𝑠𝜃  and  𝑦1 − 𝑦2 = 𝛿𝑠𝑖𝑛𝜃  or  𝑥1 − 𝑥2 = −𝛿𝑐𝑜𝑠𝜃  and   𝑦1 − 𝑦2 = −𝛿𝑠𝑖𝑛𝜃         (6.13) 

The # denotes the number of elements in the set, and 𝑀 and 𝑁 are the horizontal and vertical 

dimensions of  𝐼𝑓 𝑥,𝑦 . Hence, by varying 𝜃 and 𝛿 multiple co-occurrence matrices can be generated 

for each wavelet subband. Then different second order statistic features can be derived from the 

generated co-occurrence matrix. 

6.5 Texture signature classification 

The same Bayesian classifier applied in the previous chapter was used here for discrimination 

between the texture signatures. A leave-one-out approach [19] was applied to validate the 

classification results, which is done by designing the classifier using (n-1) samples and then evaluated 

on the remaining set-aside sample. This process is repeated n times covering all possible unique sets 

of other samples. Thereby an unbiased estimation is achieved although the performance is sometimes 

overestimated. 

6.6 Wavelet packet results 

The FD values of each corresponding subband for the optimum level of resolution are shown in Table 

6.3. The psammomatous subtype needed only two levels of decomposition to reach its optimum 

performance (i.e. before the absolute difference between the decomposed subbands becomes less or 

equal than the set threshold). The decomposition terminated at the third level for meningothelial and 

transitional and at the fourth for fibroblastic subtypes. 
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The classification performance with up to eight levels of resolution using the FD signature for best 

basis selection (BBSFD) is shown in Table 6.4, where a threshold value for the FD signature was not 

used to stop the WP decomposition. The best classification accuracy of 90.31% was achieved at the 

third level of decomposition. Alternatively, using the appropriate threshold as discussed in the 

subband optimisation section, the decomposition should terminate when there is no significant 

difference between the FD signatures ─ highlighted in bold ─ giving a slightly improved overall 

accuracy of 91.25%.  

A comparison is also performed to evaluate the performance of the BBSFD approach with two other 

first order statistics methods. The BBSFD model based method suggested in this chapter used the FD 

signatures to guide the WP tree-structured expansion in order to construct a feature vector of the 

subbands having the highest FD signatures. On the other hand, the statistical approaches used the 

highest energy for best basis selection process, where the first method (abbreviated BBSE) simply 

employed the computed highest energies of the subbands as signatures, and the second method 

(abbreviated BBSCM) extracted the co-occurrence matrix correlation, entropy and energy (with 𝛿 = 1 

and 𝜃 = 0°, 45°, 90° and 135°) as signatures for classification. The three subband decomposition 

approaches were also run at up to eight levels of resolution, and the corresponding classification 

accuracy is determined at each level. It is evident from Fig. 6.8 that the BBSFD fractal approach 

outperformed the others, where the BBSCM and BBSE approaches achieved a maximum overall 

classification accuracy of 83.44% and 73.75%; respectively. Although the BBSFD classification 

accuracies from level 2 to 4 remaining higher than the other two methods, it starts to degrade 

afterwards, scoring accuracies equal or lower to that of the energy approach BBSE. 

Table 6.3 Optimum decomposition levels for meningioma subtypes’  

FD signature absolute difference values 

Level Subtype WLL WLH WHL WHH 

2 Psammomatous 2.9767     2.9592     2.9648     2.9315 

3 
Meningothelial 2.9737     2.9781     2.9784     2.9821 

Transitional 2.9643     2.9701     2.9706     2.9756 

4 Fibroblastic 2.9585     2.9655     2.9669     2.9722 

 

 Table 6.4 Wavelet packet decomposition using maximum fractal dimension signature 

 for best basis selection 

Resolution 
Meningioma subtype Total 

Accuracy Fibroblastic Meningothelial Psammomatous Transitional 

level 1 65.00 91.25 73.75 43.75 68.44% 

level 2 82.50 91.25 95.00 86.25 88.75% 

level 3 83.75 92.50 93.75 91.25 90.31% 

level 4 86.25 86.25 93.75 88.75 88.75% 

level 5 35.00 91.25 85.00 70.00 70.31% 

level 6 75.00 82.50 91.25 27.50 69.06% 

level 7 72.50 82.50 90.00 28.75 68.44% 

level 8 47.50 75.00 87.5 40.00 62.50% 
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Fig. 6.8 Multiresolution level wavelet packet comparison of meningioma classification accuracy based on 

fractal dimension, energy and co-occurrence texture signatures.  

 

6.7 Interpretation of wavelet packet results 

Since wavelet decomposition in only low frequency channels might not provide sufficient 

distinguishable signatures [164], the feasibility of WPs based on fractal signature decomposition in 

classifying histopathological meningioma images was demonstrated in this work. 

 

The fundamental motivation for multiresolution processing is to provide a different perspective for 

viewing texture, with the analogy of viewing a scene while varying the camera zoom lens. Varying 

the resolution can highlight objects which might appear clearer than if a single resolution approach 

was applied, as small size or low contrast objects are best examined at high resolution and vice versa 

for large objects [86]. This is actually what meningioma images need, as the cell nuclei shape, 

orientation and denseness differs from one subtype to another and sometimes within the same 

subtype, reflecting on the number of resolution levels required. Thus, multiresolution using wavelets 

gives the advantage of studying both cases (i.e. large and small cell nuclei structures) at the 

appropriate resolution level, through adopting the WP expansion to facilitate investigation of middle 

and high frequencies where the Fourier spectrum had apparent significant information.  

 

It should be noted that down-sampling was not performed after each decomposition since selecting 

the subband with the most redundant values that could be represented in the minimum number of bits 

─ leading to greater compression ratio ─ was not the focus of this work. The main emphasis was on 

choosing the best basis that can derive distinct texture characteristics to improve the classifier’s 

accuracy. 
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In reality the general structure shape of the cell nuclei in one subtype are not exactly identical in all 

prepared tissue biopsies, and differences between two subtypes might be minor. Therefore, 

eliminating the cytoplasm background for cell nuclei segmentation was essential in providing a 

reliable estimate of the FD. It was shown in previous work that the segmentation process improves 

feature extraction, and hence classification performance [61]. A better classification performance for 

our case means enhancement of the differentiation capability to overcome the shape variability 

between and within the different meningioma subtypes. 

 

A different approach in assessing the fractal characteristics instead of the energy of subbands was 

pursued for tree-structured wavelet extension. The best basis selection process relied upon selecting 

the subband with the roughest surface (i.e. highest FD) only for analyses and discarding other 

subbands from the same level, then the fractal signatures of the highest subbands would be used for 

meningioma subtypes discrimination. FD provides a complexity measure for the subband texture in a 

range between 2 and 3, by checking for self similarity at different scales within the same subband 

before further decomposition. We can think of this as virtually decomposing the already decomposed 

subbands into further different scales, in a way, exploring information richness embedded in each 

subband before deciding which to select. 

 

Results showed that maximum classification accuracy was reached within two to four resolution 

decompositions ─ depending on the subtype ─ before starting to degrade. This was expected as the 

FD measures would give a reliable estimation to a certain level of resolution, whereas the more levels 

are decomposed the less details remains for the FD to measure; especially if the mid or high bands 

were selected for further analysis. Thus, determining the appropriate resolution level is not only 

important to save computational time but also to improve the quality of the extracted subband 

features. The decomposition insignificance was indicated according to the FD signature absolute 

difference between all subbands after empirically specifying a threshold, which specifies how deep 

the image resolution can be probed. This is equivalent to excluding FD signatures equal to or above 

2.985, considering them as nearer to noise rather than a meaningful roughness estimation of the 

subimage surface. Moreover, comparing the suggested  BBSFD technique with the statistical  BBSCM 

and BBSE techniques, a significant improvement in the classification accuracy was achieved by 7.81% 

and  17.50% if a threshold was used for determination of decomposition levels and a 6.87% and 

16.56% improvement if a fixed level of decomposition was applied (three levels for this case); 

respectively.  

 

The reason for meningioma subtypes not having their optimum classification performance at an equal 

level can be referred to the cell nuclei denseness variation between subtypes. Depending on the 
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subtype, denseness here means the size and number of cell nuclei existing in a biopsy and whether 

they overlap or not. Subtypes having many small size cell nuclei would expect to represent a rougher 

surface as compared to small overlapping or large size ones (i.e. fewer edges to detect). Therefore 

after the segmentation process the general structure of the cell nuclei distribution in each subtype is 

what remains, and the segmented images with more edges would be regarded as richer with texture 

information. For example, higher resolution levels would be more appropriate to analyse 

psammomatous subtypes which have less texture details (i.e. cell structure is less dense as compared 

to other subtypes, which required tweaking λ from 0.012 to 0.05 for decomposition to terminate 

earlier), while lower levels would be more appropriate for the remaining three other subtypes. 

 

It would be more comprehensible to use the suggested BBSFD technique with images that exhibit 

fractal-like characteristics, yet the FD measure can still be used with other type of images as it is 

simply an estimation of the examined surface roughness. A simple way to verify that would be to 

perform the same comparison done on the meningioma image but this time using clean non-medical 

images (e.g. images from the Brodatz album) where texture characteristics are more distinct 

throughout the image and virtually free of distorting noise.  

Given that the opportunity to test the proposed technique on other histopathological tumour images 

was not available at this moment, the robustness of the decomposition insignificance threshold when 

applied to a different type of tumour needs to be investigated. Another issue would be the effect of 

noise and the quality of extracted features, and whether it would have a deteriorating effect on 

classification accuracy. The type and effect of noise vary depending on the used modality and the 

conditions the images are acquired in. For histopathological images, noise might arise due to cracks in 

the prepared biopsy, or dye/stain artefacts, which appear to be mechanical rather than electronic. 

Meaning it is less susceptible to Gaussian or speckle noise which affects other modalities like CT, MR 

or US, making the high frequency channels become less reliable in presence of noise. As a result, the 

effect on the segmented histopathological middle and/or high frequency channels ─ which possess a 

significant amount of the cell nuclei structure information ─ is minor as compared to the low 

frequency channel which is more prone to the mechanical deformations.  

6.8 Gabor filter 

Image texture can also be analysed in a similar wavelet-like multiresolution representation using 

Gabor filters. It can be defined as a Gaussian modulated sinusoid with a capability of multiresolution 

decomposition due to its localisation both in spatial and spatial-frequency domain. Making use of 

Denis Gabor’s class of harmonic oscillating functions within Gaussian envelopes [183], Daugman 

showed that the orientation and spatial-frequency selective receptive field properties of neurons in the 

brain’s primary visual cortex can be simply modeled by 2-D Gabor-like filters [184, 185].  Bovik et al 
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proposed a model for locating filters by exploiting individual texture power spectrum characteristics 

[14], while Jain and Farrokhnia further proposed a dyadic Gabor filter bank covering the spatial-

frequency domain with multiple orientations [186]. Other studies proved Gabor filter to be very useful 

in detecting texture frequency and orientation as well [13, 153, 187] and references cited therein. The 

real impulse response of a 2-D sinusoidal plane wave with orientation 𝜃 and radial centre frequency 

𝑓𝑜  modulated by a Gaussian envelope with standard deviations 𝜍𝑥and 𝜍𝑦  respectively along the x and 

y  axes is given by 

𝑕 𝑥,𝑦 =
1

2𝜋𝜍𝑥𝜍𝑦
𝑒𝑥𝑝  −

1

2
 
𝑥2

𝜍𝑥
2 +

𝑦2

𝜍𝑦
2  cos 2𝜋𝑓𝑜𝑥                  (6.14) 

𝑤𝑕𝑒𝑟𝑒 𝑥 = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃
                𝑦 = −𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃

 

The Gabor filter in the corresponding spatial-frequency domain would be represented as two 

symmetrically spaced Gaussians as follows 

𝐻 𝑢, 𝑣 = 𝑒𝑥𝑝 −2𝜋2  𝑢 − 𝑓0 
2𝜍𝑥

2 + 𝑣2𝜍𝑦
2  + 𝑒𝑥𝑝 −2𝜋2  𝑢 + 𝑓0 

2𝜍𝑥
2 + 𝑣2𝜍𝑦

2                   (6.15) 

and spatial and corresponding spatial-frequency response are graphically shown bellow in Fig. 6.9. 

   

 

Fig. 6.9 Gabor filter having 0° orientation and 32 cycles / image width for a 256 × 256 size image. 
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Multiple filters covering the spatial-frequency domain can be generated by varying the filters’ centre 

location through tuning the frequency 𝑓0 with a specific angle 𝜃. Fig. 6.10 shows the frequency 

response of the dyadic filter bank in the spatial-frequency domain. The Gaussian envelope unknowns 

𝜍𝑥  and 𝜍𝑦  can be determined as in (6.16) after setting frequency cut-off to -6 db and the frequency and 

orientation bandwidths (𝐵𝑓 ,𝐵𝜃 ) to constant values matching psychovisual data [188]. In particular an 

interval of one octave between the radial frequencies is recommended [186]. The frequency 

bandwidth specified by octaves (i.e. the interval between  𝑓1 and its double 𝑓2 ) increases in a 

logarithmic fashion given by  log2 𝑓2 𝑓1  . This was inspired by experiments that showed the 

frequency bandwidth of simple cells in the visual cortex is roughly one octave [148]. For this work a 

circular Gaussian was chosen by setting 𝜍𝑥 =  𝜍𝑦  to have an equal spatial coverage in all directions, 

and a 45° orientation bandwidth. 

𝜍𝑥 =
 𝑙𝑛2 2𝐵𝑓 + 1 

 2𝜋𝑓0 2𝐵𝑓 − 1 
   𝜍𝑦 =

 𝑙𝑛2

 2𝜋𝑓0𝑡𝑎𝑛 𝐵𝜃 2  
                  (6.16) 

Carefully setting the filter characteristics would result in proper capture of texture information and 

reduce the effect of aliasing. This is achieved by correctly selecting the filter position (𝑓0 ,𝜃) and 

bandwidth (𝜍𝑥  ,𝜍𝑦 ), and making sure the central frequencies of channel filters lie close to 

characteristic texture frequencies to prevent the filter response from falling off too rapidly [188]. 

From each of the images having size of 512 x 512 used in this work, the mean was first subtracted to 

reduce the filter’s sensitivity to texture with constant variation, then six radial frequencies 

( 22 2 ,  23 2 ,  24 2 ,  25 2 ,  26 2  𝑎𝑛𝑑  27 2 cycles/image-width) with four orientations 

 0°, 45°, 90° 𝑎𝑛𝑑 135°  was adopted according to [186], giving a total of 24 filters. In general, the 

number of dyadic Gabor filter banks required is given by 𝐴 ∗ log2 𝑁𝑐 2  , where 𝑁𝑐  is the image 

width and A is the number of orientation separations (e.g. 𝐴 = 4 for a 45° orientation separation 

angle). Filters with radial frequencies 1 2 and 2 2  where excluded due to their insensitivity (i.e. the 

filters capture spatial variations that are too large to explain textural variation in an image) .Also the 

highest frequency was selected to be  𝑁𝑐 4   2  in order to guarantee that the passband of the filter 

falls inside the image. Finally the extracted features would represent the energy of each magnitude 

response. 
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Fig. 6.10 Gabor filter defined in the spatial-frequency domain with radial frequencies 1 octave apart, 

bandwidth 1 octave each and  45° orientation separation (only filters’ half-peak supports are displayed). 

Applying a set of filter banks resembles the operation of wavelet transforming an image at selected 

spatial frequencies. In a way, the Gaussian function is modulated and translated for generation of the 

Gabor basis functions, in analogy to the scaling and translation of the mother wavelet and scaling 

function for wavelet basis generation. However, the Gabor function is considered an admissible 

wavelet [186], in other words, the basis produced by the Gabor function is non-orthogonal resulting in 

redundant decompositions. Also, depending on the size of the processed image, the number of 

required radial frequencies for positioning the centres of the Gabor filter  banks needs to be specified 

prior to processing, which is similar to choosing the number of decomposition levels for the wavelet 

packets. 

6.9 Gabor filter results 

The Gabor filter was applied to the same histopathological images which were used in the wavelets 

section. The energy signature of each filter output was computed and used as a feature vector for 

classification. Additionally, the energy extracted features were also combined with four other texture 

measures of the processed image itself, and the fused signatures were used for classification. Model 

based signatures such as the fractal dimension (FD) and Gaussian Markov random fields (GMRF), 

and statistical signatures as the grey level co-occurrence matrix (CM) and the run length matrix 

(RLM) were used in the combinations. As a mean for comparison, this procedure was initially applied 

on the blue colour channel of each image ─ as it showed better performance in terms of classification 

accuracy due to the dyes used in staining the meningioma biopsies [61] ─ and then applied again on 

the same colour channel after having the cell nuclei general structure segmented. 

Table 6.5 presents the results, where the subscript S and NS indicates whether the cell nuclei were 

segmented or not (see section 5.2.2 and 5.5.3 for segmentation process) before extraction of the Gabor 
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filter energy signature 𝐺𝑓   𝐸  alone or in combination with other texture measures. The highest 

classification accuracy of 95.00% was reached when combining the image filters’ energy and the 

fractal characteristics  𝐺𝑓   𝐸 & 𝐹𝐷 𝑁𝑆   as a feature vector without performing any prior segmentation. 

Table 6.5 Classification accuracy comparison of Gabor filtered meningioma images after extraction of the 

energy and in combination with the fractal dimension, Gaussian Markov random fields, grey level 

co-occurrence and run-length matrices texture measures. 

Filter texture  

signature 

Meningioma subtype Total 

Accuracy Fibroblastic Meningothelial Psammomatous Transitional 

Gf(E)S 93.75 82.50 96.25 85.00 89.38% 

Gf(E & FD)S  91.25 82.50 95.00 83.75 88.12% 

Gf(E & GMRF)S 95.00 81.25 95.00 90.00 90.31% 

Gf(E & CM)S 93.75 78.75 95.00 87.50 88.75% 

Gf(E & RLM)S 92.50 78.75 98.75 90.00 90.00% 

Gf(E)NS 83.75 86.25 90.00 73.75 83.44% 

Gf(E & FD)NS  100 87.50 96.25 96.25 95.00% 

Gf(E & GMRF)NS 97.50 77.50 97.50 92.50 91.25% 

Gf(E & CM)NS 100 92.50 96.25 86.25 93.75% 

Gf(E & RLM)NS 100 80.00 97.50 82.50 90.00% 

 

6.10 Interpretation of Gabor filter results 

An alternative multiresolution texture analysis approach based on Gabor filters was applied to the 

meningioma images. It was intended to investigate whether the meningioma subtype discrimination 

can be further improved, even when the Bayesian classifier used in the wavelet section remains the 

same. Unlike the WP section, it was more practical and less computationally intensive to combine the 

FD of each subimage with the corresponding energy of the filter outputs rather than having the FD 

computed for each of the 24 filters. This similarly applies for the rest of the mono-resolution measures 

used in the feature extraction process. 

 

Using the energy of the Gabor filter outputs alone as a texture signature for discrimination between 

the meningioma subtypes proved to be more effective than single or mono-resolution texture 

measures discussed before. For instance, the highest accuracy achieved for four different mono-

resolution methods used under the same conditions would not exceed 84% [61] as compared to 

89.38% for the Gabor filter multiresolution case. Nevertheless, results showed that this is not the 

optimum extent that the classification accuracy can reach and there are still unexplored endeavours 

for improvement.  

 

The coloured histopathological images were decomposed to the main RGB channels and the blue 

channel was chosen for operation as dyes used in the staining process of the meningioma tissue 

biopsies gave the cell nuclei ─ considered a major mark of distinction between the different subtypes 

─ a colour near to blue.  Then feature extraction was performed with and without having the 

meningioma cell nuclei segmented. The feature extraction involved the multiresolution Gabor filter 
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outputs applied individually for classification and in combination with other mono-resolution texture 

measures characterising the same image texture as well. The segmentation process worked well for 

the filter’s output energy signature  𝐺𝑓   𝐸 𝑁𝑆   if no segmentation took place. While there was no 

difference between the segmented and non-segmented versions for the energy and RLM 

combination 𝐺𝑓   𝐸 & 𝑅𝐿𝑀 , it was better to have the histopathological images not segmented when 

combining the energy of the filter outputs with the FD, GMRF or CM of the image.  

 

All classification results gave an accuracy equal or above 90% when the mono and multiresolution 

methods were combined together and without segmentation. The remarkable combination is 

the  𝐺𝑓   𝐸 & 𝐹𝐷 𝑁𝑆  which gave the highest classification accuracy ─ even higher than the 92.50% 

accuracy achieved by the BBSFD WP technique ─ and the improvement was up by 6.88% when the 

subimages were not segmented. Although the classification performance degrades when the energy of 

the 𝐺𝑓   was utilised alone without segmentation as indicated in Table 6.5, the loss is compensated and 

accuracy is further improved when the filter output is combined with the FD of the image. As it was 

previously shown that the use of the morphological gradient in the segmentation process would 

negatively affect the classification accuracy of the FD measure [61], it is expected that the fractal 

characteristics of the non-segmented images to have a better expression which was reflected in the 

95.00% accuracy achieved.  

 

It can be deduced that an optimum expression for the meningioma tissue requires both mono and 

multiresolution processing to maximise the difference in-between the subtypes. As the cell nuclei size 

varies between the different subtypes, the multiresolution approach can better identify these 

differences and represent them by a measurable quantity (e.g. Gabor filter banks energy signature for 

this case) exemplifying the amount of information at different scales. Yet relying on the on the energy 

of the filter outputs alone is deemed insufficient, thus analysing the texture at its highest resolution 

using a mono-resolution approach could contribute towards highlighting some of the aspects 

overlooked by the Gabor filter approach. An example was the FD signature which provides a mean to 

check for self-similarity or roughness of the surface, where smaller objects would result in a higher 

FD estimate and vice versa. It has also a considerable immunity to intra-variability of the number of 

cell nuclei in the same subtype. Similarly, the rest of the applied mono-resolution methods had also its 

own approach in texture characterisation, whether the emphasis was on the dependence of each pixel 

in the image only on its neighbours as the case in GMRF, or deriving first and second order statistics 

after computing the joint probability or the number of runs for a certain set of pixels with a certain 

grey-level value for CM and RLM; respectively. 
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Although finer quantisation was recommended by having an orientation angle of 30° for centring the 

location of the filters [188], a 45° orientation angle was used as its is less computationally expensive 

and finer orientation quantisation did not show significant improvement for the given 

histopathological texture samples. Also, experimenting by smoothing the subimages’ texture with a 

Gaussian filter prior to extraction of the feature was applied as well. The approach suggested by Jain 

and Farrokhnia through setting the filter’s window size relative to the radial frequencies of the 

corresponding tuned filter [186] resulted in an 1% decrease in the recorded accuracy. This can be 

referred to the blurring which negatively affected the accuracy of the FD signature.  

An advantage of the mono-resolution approach is its simplicity in application and speed in processing. 

Yet unlike synthetic or artificial texture, the complexity and non-stationary nature of medical texture 

requires a multi-perspective analysis in order to spot subtle differences which might be crucial in 

subtype discrimination. This work takes a step further and demonstrates that a generated fused feature 

vector exploiting the strengths of both resolution approaches could provide an optimum 

characterisation for meningioma texture classification.  

6.11 Conclusion 

Enhancing the quality of the extracted features that can optimise meningioma texture classification 

was the main concern of this work. A novel approach that used the fractal dimension for wavelet tree-

structured decomposition demonstrated its capability to distinguish grade I histopathological 

meningioma images with an improved accuracy as compared to energy based decomposition. The 

BBSFD relies on revealing texture structure complexity which would better characterising the 

information situated in the middle and high frequency bands. Also, the appropriate decomposition 

level would be detected when no more significant difference in-between the subbands exist, saving 

unnecessary computational operations.Possible future developments would be using an M-band 

wavelet transform for subband decomposition. 

On the other hand, the multiresolution approach based on Gabor filters proved to more effective in 

terms of classification accuracy as compared to four other mono-resolution approaches. Additionally, 

the generation of a feature vector mutually combining the energy signature of the Gabor filter outputs 

and either of the FD, GMRF, CM or RLM mono-resolution methods would improve subtype 

discrimination. The appropriate selection of the feature extraction method(s) according to the nature 

of the examined texture (tissue) is necessary for boosting the ability to distinguish subtle differences 

in-between the meningioma subtypes, which was optimised by the fusion of the fractal characteristics 

with the filter bank’s energy signature. Furthermore, testing these techniques on other grades of 

meningioma or different types of brain tumours would assist in benchmarking their performance. 
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Chapter 7 

CONCLUDING DISCUSSION 

Various texture analysis methods were applied for the purpose of novel, and effective tumour 

discrimination. The applied techniques went beyond simply differentiating between normal and 

abnormal tissue to the process of tumour type and stage categorisation. The intention was to cover 

both kinds of textures that might be encountered in medical images: textures acquired at a molecular 

or macro-scale as in histopathological DM imaging; and at a tissue or micro-scale as in CT imaging. 

The proposed texture analysis techniques optimised the discrimination performance either by using 

one texture measure but with a special type of acquired CT images in order to enhance the feature 

extraction ability, or by optimising the performance of the texture measure itself by altering the way 

the features are extracted, or representing each texture with multiple feature extraction methods, using 

all possible combinations and then determining which pair(s) can improve the classification accuracy. 

7.1 Challenges in medical texture characterisation 

The first part of this thesis focused on analysing medical texture distinguished to have fine structure, 

and was an example of the kind of images we have to deal with when using a non-invasive modality. 

Then coarse texture acquired invasively was discussed in the second part, where another set of texture 

measures and a different classification approach was applied. Finally the noise impact on both types 

of texture was discussed as well. 

7.1.1 Fine structure texture (CT Lung tumours) 

Lung tumour texture acquired from CT images represents an example of extracting features from 

texture with relatively small size principal primitive elements (i.e. textons). Similar types of texture 

can be encountered in other non-invasive imaging modalities, such as MR and US, where the clinician 

decides the type of modality according to the organ to be diagnosed. Fractal feature extraction 

methods relate more to the underlying physiology for organ tissues which might exhibit fractal-like 

properties (e.g. lungs and brain), hence can be one of the most suitable texture measure to extract 

features for distinguishing between lung tumour stages. Besides the capability of capturing self-

similarity, the FD scale and direction-invariance can give it an advantage in dealing with 

heterogeneous medical texture. The roughness of the lung tissue structure increases as the tumour 

stage progresses, thus deformation or chaoticity in the structure was coined quantitatively as an FD 

value and used in stage discrimination. Another point is the use of CE CT images in the fractal 

analysis for highlighting blood vessels in the tissue, since their shape is essential in characterising the 

tissue abnormality. Usually tumour cell growth is associated with formation of a network of blood 
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vessels – called angiogenesis – for supply of oxygen and other nutrients. In fact, this tumour 

angiogenesis is established in a chaotic manner, unlike vasculature in normal tissue, causing the 

roughness of the cancerous tissue. Additionally, sometimes leakage from the tumour vasculature to 

the surrounding tissue may occur, hence these deficiencies can be exploited to highlight tumour areas 

using the contrast agent for an efficient FD estimation of the surface. Aggressive tumours demand 

more oxygen and nutrients for its rapid and chaotic growth, and the more the aggressive the tumour 

the more the leakage of the injected contrast agent from its vasculature. 

Selecting the appropriate X-ray voltage and tube current acquisition parameters can also assist in an 

accurate FD and corresponding lacunarity estimation of the examined tissue area. Yet there is a trend 

to acquire the CT images with the least amount of possible radiation dose – known as RRD CT 

images – to reduce the amount of radiation energy absorbed by the tissue. So the physicians may have 

to start to adapt themselves to deal with lower contrast quality images and with higher levels of 

associated noise; since higher quality images might not be the best option for diagnosis as far as 

patients’ safety is concerned. This situation requires texture measures that can balance the trade-off of 

robustness under distortion, which interprets the suitability of using fractals for analysing texture in 

sub-optimal conditions. The FD was less susceptible to noise encountered in CT images (see chapter 

4) in addition to its good capability for lung tissue discrimination (see chapter 3). 

Advantages of fine structure texture reside in its non-invasiveness. CT, MR, US and other similar 

modalities aim to reveal as much information as possible regarding the organ of interest with minimal 

damage to patients’ body. Also it is much faster compared to invasive DM modality, which requires 

biopsies to be taken for analysis. However, this comes at the expense of acquiring images with less 

contrast and resolution compared to DM images. Besides the ability to magnify the pathologies in the 

DM images, the dyes used to stain the biopsies and the associated biochemical reaction – giving 

certain region of interest distinguishable colours – can add to DM images another property which can 

enrich the quality of the extracted features. Nevertheless, both modalities are needed in the medical 

environment, usually the non-invasive for initial diagnosis, and if the physician is still unsure of the 

abnormality of the observed tissue, the invasive modality can be used for verification.  

7.1.2 Coarse structure texture (DM brain tumours) 

Histopathological or DM meningioma brain tumours images were an example of coarse structure 

texture encountered in medical image analyses. Larger texture primitives (e.g. cell nuclei for the 

meningiomas) in coarse texture facilitates the ability to discriminate between the different texture 

(tumour) types, as compared to the fine texture of lungs which consists of relatively small textons 

(blood vessels in this case). The blue colour channel which was found to be the best for characterising 

the meningioma cell nuclei from the cytoplasm background was selected for feature extraction. Then 

several texture measures were experimented on the histopathological images individually and 
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combined, and with and without cell nuclei segmentation. Carefully selecting more than one texture 

measure that suits the case under investigation can improve the classification accuracy, that is, the 

discriminating powers of both measures are combined, and each can compensate for each others 

weaknesses in texture characterisation. It was found that using multiple measures might not guarantee 

better classification accuracy, in fact, could have a negative effect even if the fused features vector 

dimensionality was reduced via an optimum feature selection approach (see Table 5.11). The RLM 

and GMRF combined together were the most suitable among the statistical and model-based texture 

measures to discern the different meningioma subtypes of grade I. The robustness of the RLM and 

GMRF for meningioma discrimination and under distortion affecting the DM images was investigated 

(see section 5.4).  That was done by simulating the impact of crack or craquelure deformation on 

pseudo-cells resembling the shape of the meningioma cell nuclei; then features were extracted from 

multiple generated images having various cell densities. The segmentation process was used to 

eliminate possible cracks in the background and for leaving the cell nuclei only for processing. 

A third feature extraction technique using multiresolution wavelet-based methods was also applied to 

the histopathological images. The high resolution and large size of the DM images enabled the 

decomposition into several scales, which facilitated the localisations of both small and large size 

object of interest (cell nuclei), depending on the meningioma subtype. The WP measure showed that it 

can record – without being combined with other measures – nearly a similar accuracy to that of the 

RLM and GMRF combined. That was achieved when the FD was employed for subband tree 

decomposition instead of the traditional energy-based decomposition. This takes advantage of the FD 

independence to image intensity linear transformations and to abrupt changes in texture (i.e. cracks in 

the prepared biopsy) in comparison to the to traditional energy-based texture methods. Moreover, the 

other wavelet-based method, the Gabor filter, had a fairly good discrimination when the energy of 

each filter output was used. However, when the filter outputs were combined with the corresponding 

FDs of the same meningioma image samples, a highest classification accuracy, which outperformed 

all other previously mentioned texture measures, was achieved. This also demonstrates the 

significance of FD utilisation in CT and DM acquired images for detecting and analysing pathologies, 

whether it was used solely (chapter 3), or to guide the subband structured-tree decomposition, or 

combined with other texture measures (as the outputs of the Gabor filter). 

Regarding distortion occurring in fine structure texture, as additive Gaussian and/or multiplicative 

Rayleigh noise which was found in the analysed CT images, might carry a more negative impact since 

its small textons can be easily obscured. Cracks in the histopathological coarse texture can alter the 

spatial relationship between texture textons, changing the way the texture pattern is organised. 

Nevertheless, the investigated CT and DM images were of good quality (i.e. the amount of distortion 

in both modalities was low), and distorted versions – through reconstructing noisy CT images or 
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generating pseudo-cell nuclei images with varying densities – were generated to assess the robustness 

of the applied texture measures in sub-optimal conditions. 

7.2 Classification approach 

As it was not easy to spot the difference between the lung tumour stages using texture only, especially 

for the early stages, a threshold representing the median of all estimated FD values was empirically 

placed to differentiate early from late stage tumours. Such classification technique, known as 

quantitative performance analysis, may be used when the differences between the various textures is 

minor, making it difficult to assign the feature values into separate classes. However, a disadvantage 

is that it is not a completely automated classification technique, and the threshold value might not be 

applicable to other tumours or cases acquired in a different manner (e.g. images are not contrast 

enhanced), thus the quantitative process might have to performed again for selecting a suitable 

threshold. In the histopathological meningioma cases a Bayesian classifier, which is based on class 

assignments classification, was used to discern the variation between the subtypes, as the texture was 

coarse and the distinction between the various subtypes was more obvious. 

We believe that the presented work can improve the physician’s ability to detect and analyse 

pathologies leading to a more reliable diagnosis. The proposed texture analysis techniques provide an 

automated tumour discrimination process through recommending the optimum features which best 

characterise CT lung and histopathological meningioma tumours. This can make the diagnostic 

process easier and faster, and can overcome the problem of variation in the reported diagnosis. 

Whether the concern was to improve lung stage prediction accuracy relying on CT images only 

without PET scans or for a highly accurate meningioma subtype discrimination technique, the early 

detection and the ability to efficiently characterise and reveal the degree of tumour type and severity 

can have a direct impact on the treatment procedure, and hence becoming crucial for saving patients’ 

lives and promoting faster recovery.  

Future work involves working with radiologists to study the effect of CT image reconstruction 

algorithms and imaging protocols of various scanners on the FD for lung tumour stage prediction, and 

for other texture measures as well. This will allow for standardising lung tissue texture analysis 

procedures which would maintain texture feature quality consistency. Also, maintaining clinicians’ 

diagnostic accuracy is an important issue when reducing the radiation dose in CT images. Although 

RRD CT images are noisier and lower in image quality compared to the CT images used in this work, 

it is considered much safer for patients and is primarily used for paediatric and pregnant patient 

imaging. Thus, studying the texture analysis algorithm efficiency when applied to RRD CT images 

would assist in investigating robustness under sub-optimal image conditions; furthermore, expanding 

this study to include other types of soft-tissue organs, such as liver and kidney, would be interesting. 
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Finally, the developed BBSFD technique for discriminating grade I histopathological meningiomas 

was based on the generalisation of the standard wavelet dyadic decomposition; however, we aim to 

expand the BBSFD to a so-called M-band wavelet transform, where a particular type of filter bank 

architecture is used to subdivide each of the dyadic or octave bands into further M channels. This 

signal decomposition into M, instead of 2, channels could provide more flexible tiling of the time-

frequency plane, and hence achieve a better multi-scale multi-directional image filtering. 
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APPENDIX 

A.1 Fractal dimension and corresponding lacunarity for tumour ROIs extracted from 15 CE CT cases 

plotted with respect to slice number. 
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A.2 Histograms of noise detected in the uniform acquired regions of a cross section in the scanning 

table in Fig. 4.1(a) of 11 baseline CE CT lung tumour images. 
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A.3 Histograms of noise detected in the 56 NCE CT images having a 2mm slice thickness. Uniform 

grey level areas were selected from the dark background above the scanning gantry in Fig. 4.1(b).The 

shape of the histograms indicates that most noises have a Gaussian distribution (the cases are 

successively arranged in a raster-scan way).  
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