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Intensity variations in image texture can provide powerful quantitative information about physical prop-
erties of biological tissue. However, tissue patterns can vary according to the utilized imaging system and
are intrinsically correlated to the scale of analysis. In the case of ultrasound, the Nakagami distribution is
a general model of the ultrasonic backscattering envelope under various scattering conditions and den-
sities where it can be employed for characterizing image texture, but the subtle intra-heterogeneities
within a given mass are difficult to capture via this model as it works at a single spatial scale. This paper
proposes a locally adaptive 3D multi-resolution Nakagami-based fractal feature descriptor that extends
Nakagami-based texture analysis to accommodate subtle speckle spatial frequency tissue intensity var-
iability in volumetric scans. Local textural fractal descriptors – which are invariant to affine intensity
changes – are extracted from volumetric patches at different spatial resolutions from voxel lattice-based
generated shape and scale Nakagami parameters. Using ultrasound radio-frequency datasets we found
that after applying an adaptive fractal decomposition label transfer approach on top of the generated
Nakagami voxels, tissue characterization results were superior to the state of art. Experimental results
on real 3D ultrasonic pre-clinical and clinical datasets suggest that describing tumor intra-heterogeneity
via this descriptor may facilitate improved prediction of therapy response and disease characterization.

� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Analysis of the local characteristic patterns of tissue texture can
reveal subtle pathological features deemed important for clinical
diagnosis. Spatial variation of textons quantified in terms of image
‘‘surface roughness’’ has been shown to reflect tumor functional
heterogeneity, and to lead to a better understanding of disease
state (Bae et al., 2013; Chicklore et al., 2013; Davnall et al., 2012;
Al-Kadi and Watson, 2008). However, sub-voxel resolution com-
plex and higher order textural features can be difficult to discern
by simple observation. These texture signatures may convey signif-
icant information about disease progression or regression. How-
ever, quantifying these subtle signatures in ultrasound images is
challenging.

Our motivation stems from a clinical need to improve the diag-
nosis and therapy of liver cancer. Approximately 100,000 patients
are diagnosed each year with primary liver cancers in the United
States and Europe (Cancer Research UK, 2014; American Cancer
Society, 2014). When this is compared against worldwide statis-
tics, liver cancer is even more common in developing countries
(World Health Organization: International Agency for Research
on Cancer, 2012). Although it the sixth most common cancer in
the world (Ferlay et al., 2013), incidence varies across the world,
and it is the most cancer type in some developing countries
(Parkin et al., 2014). Surgery is considered the only curative treat-
ment; however, this is not suitable in the majority of cases due to
co-morbidity, extent or location of the cancer, with chemotherapy
forming the mainstay of treatment in these patients. Chemother-
apy can have significant side effects, and may not be effective in
all cases. Development of monitoring techniques during the course
of chemotherapy may permit dose adjustment in responders to
minimize side effects, while alternative treatments could be
offered to non-responders. Current monitoring techniques rely on
computed tomography and magnetic resonance imaging, with fre-
quency limited by the potential damage from ionizing radiation
and cost consideration respectively. Despite the difficulties of
using ultrasound for monitoring disease (e.g. operator dependent,
poorly reproducible and non-standardize), it is a technique that
is known to be rapid, relatively inexpensive, readily available, with
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no exposure to ionizing radiation, making it ideal for frequent
monitoring of liver tumors during a course of treatment.

Given the advantages of ultrasound, analyzing tissue speckle
from a single resolution perspective is limiting, as substantial
information that could assist tumor tissue characterization can
be hidden at sub-voxel resolution. This is true for the smaller
necrotic or functionally low-activity regions that exhibit a hypere-
chogenic appearance compared to healthy tissue (Ueta et al.,
2011). We hypothesize that the difference in echogenicity of the
tumor speckle texture can be exploited as an indicator of disease
responsiveness to treatment (Czarnota et al., 2013). Nevertheless,
the functionally low-activity regions within the tumor texture
are relatively small, especially in the early sessions of tumor che-
motherapy treatment. They also tend to have low intensity
contrast compared to the aggressive or functionally active
background of the remaining tumor. Identification of subtle
changes in these regions based on visual assessment of the
intensity alone can be challenging.

Our approach is motivated by four observations:

� Tumors are heterogeneous: most previous work has accounted
for functionally active malignant regions rather than the
peripheral low activity necrotic regions which may additionally
provide key information on disease progression or regression.
These subtle variations and deviations within the speckle tissue
texture were deemed too chaotic to be characterized in Larrue
and Noble (2014), but are important for understanding disease
state.
� Heterogeneity suggests using a multi-resolution texture analysis: a

carefully designed multi-resolution approach which is visually
discriminative and geometrically informative could reveal small
speckle changes and is better suited to describe the mixture dis-
tribution complexity that underpins a heterogeneity model.
� Fractal analysis is well-suited to this problem: conventional

energy-based wavelet decompositions are susceptible to local
intensity distribution variations; the fractal signatures used in
Fig. 1. 3D multifractal Nakagami feature descriptor algorithm design
our approach, derived from the wavelet representation sub-
bands related to physiological properties of texture surface
roughness are not; finally.
� Analysis should be three-dimensional: performing a 3D texture

analysis based on a volumetric Nakagami modeling could facil-
itate a more reliable estimate of the Nakagami parameters,
where the 3D location of each voxel provides a better localiza-
tion of speckle distribution mixtures.

In this work, a novel multifractal Nakagami-based volumetric
feature descriptor that is invariant to local speckle attenuation
changes is proposed. A pipeline summarizing the stages of our
approach is illustrated in Fig. 1. It is postulated that fractal tissue
characteristics locally derived from 3D textural tumor patterns at
several scales and from the RF envelope of the ultrasound back-
scattered volumes can assist in attaining descriptive features that
relate to underlying biological structure. These tissue textural frac-
tal characteristics tend to change in cases of therapeutic response,
providing an attractive indicator for disease response to treatment
during chemotherapy.

This paper is organized as follows. State of the art and chal-
lenges associated with characterizing speckle tissue texture heter-
ogeneity are summarized in Sections 2 and 3, followed by a
detailed explanation of the proposed 3D multifractal Nakagami-
based feature descriptor in Section 4. Sections 5 and 6 present
the experimental results and discuss the potential significance of
the work. The paper concludes in Section 7.

2. Related work

One of the effective statistical techniques used for modeling
various backscattering conditions in medical ultrasound is the
Nakagami distribution. This probabilistic distribution is known
for its analytical simplicity and effective modeling of dense scatter-
ers, accounting for amplitude and spacing, and can be reduced to a
Rayleigh distribution under certain assumptions of scatterer
for ultrasonic tissue characterization introduced in this paper.
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density and number (Shankar, 2000). Shankar et al. first proposed
the Nakagami distribution for characterizing conditions ranging
from pre- to post-Rayleigh existing in ultrasound images, and later
for modeling the radio-frequency (RF) envelope of the ultrasound
backscattered signal in characterizing B-mode breast masses
(Shankar et al., 2001). Others have attempted to tackle the issue
of accurate estimation of the Nakagami distribution. For instance
(Larrue and Noble, 2011) employed Gamma kernel density estima-
tion to compute a smooth estimate of a distribution within small
windows of B-mode ultrasound images, but the mixture of distri-
butions occurring at the boundaries between structures was not
accounted for. The impact of morphological parameters and tumor
structures on the Nakagami parameters statistics were analyzed in
Larrue and Noble (2014). A limitation observed was that there was
a need for a robust algorithm to compute the Nakagami parametric
images that better delineate the structures and the context in and
around the tumor. Characterizing homogeneous tissues via
improving the smoothness of the Nakagami parametric images
was shown in Tsui et al. (2014). The technique relies on summing
and averaging the Nakagami images formed using sliding windows
with varying window sizes related to the transducer pulse length.
However, a relatively large window size (required for stabilization)
may affect the reliability of the estimated Nakagami parameters,
and hence degrade the spatial resolution of the resulting Nakagami
image.

The Nakagami distribution has been further employed as an
image feature in various image analysis contexts. For instance, five
contour features and the two Nakagami parameters were used for
classification of benign and malignant breast tumors in Tsui et al.
(2010). In a subsequent work malignant tumors were shown to
be more pre-Rayleigh distributed than those from benign counter-
parts (Tsui et al., 2010); however, the calculation of the average
intensity value in the Nakagami image makes it susceptible to spa-
tial frequency intensity variability. Further, that particular tech-
nique was optimized for 2D ultrasound images which may not
reliably represent heterogeneous distributions of scatterers (or
speckle) encountered within a tumor volume. A random forest
based solution to learn tissue-specific ultrasonic backscattering
and a signal confidence for predicting heterogeneous composition
in atherosclerotic plaques was proposed in Sheet et al. (2014). That
technique was developed for intravascular ultrasound and risk
assessment of plaque rupture (Zhou et al., 2002). Necrotic core
was not considered in that method. Finally, Bouhlel and Sevestre-
Ghalila (2009) AND Klein et al. (2011) describe a Markov random
field model combined with Nakagami distribution estimation to
differentiate malignant melanoma from normal tissue. However
it was found that the estimated scale model parameter was highly
sensitive to image quality, and hence subtle variations could go
unnoticed. For an overview of ultrasound tissue characterization
we refer the reader to Noble (2010). Previous work on ultrasound
Fig. 2. Six ultrasound hypoechoic to hyperechoic gray scale target phantoms havin
representing a varying intensity from hypoechoic, �6, �3, +3, +6 dB, and hyperechoic, r
texture analysis of tumors has considered both global and local
non-uniformity quantification of the tumor texture at only a single
analysis scale. Herein we are primarily concerned with tumor
intra-heterogeneity (i.e. micro-structures within the tumor speckle
texture) which is more challenging.

3. Challenges in ultrasonic speckle texture characterization

Speckle is a granular-shape stochastic pattern which appears in
an image resulting from the scattering of an RF incident signal on
an object (Sanches et al., 2011). The spacing and localization of
the scatterers in the scanned object structure contribute to the
local variation and distribution of the recorded texture pattern.
However the characteristic interference patterns, known as
speckle, produce an overall reduction in global image contrast
(Noble, 2010). As a consequence, the boundaries separating differ-
ent structures are less well defined, increasing difficulty in delin-
eating regions of interest with a resultant increase in inter-and
intra-observer variability for tumor detection.

A means to mitigate against effects such as the beam-tissue
physical interaction and other acquisition factors is to characterize
the objects via their speckle textural properties (De Grandi et al.,
2003; Madabhushi and Metaxas, 2003; Sadeghi-Naini et al.,
2013). Textons or texels (texture elements) which are the funda-
mental components of texture that collectively form the observed
speckle pattern texture do not directly correspond to the underly-
ing structure; however, the local intensity textural pattern can
reflect the local echogenicity of the underlying scatterers
(Anderson and Trahey, 2006), see Fig. 2. This is due to the stochas-
tic nature of the speckle pattern. Viewing the structure locally as a
collective texton structure can give information about the underly-
ing scatterer behavior. We hypothesize here this may lead to an
improvement in internal structure delineation, and hence tumor
characterization.

Fig. 3(a) shows a simulated lesion phantom having three differ-
ent sizes at a fixed depth and with four levels of intensity contrast
variability. The small round simulated hyperechoic region (marked
with an arrow) resembles the functionally low-activity regions on
real B-mode ultrasound images; appearing subtle and challenging
to identify. Note that the situation would be even more compli-
cated in real B-mode ultrasound tissue where the functionally
active background of the aggressive tumor tissue would not be as
uniform as in this example, and the non-aggressive regions do
not usually have a constant intensity distribution, see Fig. 3(b).

The tissue characterization solution, as discussed in the paper,
is to use a multi-resolution approach that highlights higher order
statistical features of the RF envelope. Such features could go
unnoticed in B-mode ultrasound and an experienced observer
could struggle to identify subtle interval changes in these impor-
tant texture features.
g 8 mm diameter and 4 cm depth and corresponding simulated B-mode image
espectively.



Fig. 3. (a) Simulated ultrasound B-mode image following the method in Bamber and Dickinson (1980) showing different 4 cm depth of 4, 6 and 8 mm diameter gray scale
target phantoms ranging from �6, �3, +3 and +6 dB varying intensity, (b) a real ultrasound B-mode volume of interest of a liver tumor with corresponding fractal slice map in
(c) – estimated from the RF envelope of the ultrasound backscattered signal – indicating the subtle low-activity regions.
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Fractals and wavelet packet analysis provide effective ways to
break down statistical complexity to distinguish between different
texture regions, where the invariance to affine speckle intensity
changes for the former and the high sensitivity to local features
for the latter facilitates effective texture discrimination (Al-Kadi,
2009). Furthermore, according to the uncertainty principle, the
wavelet packets can achieve an optimal joint spatial-frequency
localization, i.e. simultaneously maintain a good boundary accuracy
and frequency response (Rangayyan, 2005), and the estimated frac-
tal dimension can give a quantitative assessment of the surface
roughness (Al-Kadi and Watson, 2008; Lopes and Betrouni, 2009).
Finally, simultaneous macro and micro scale tumor texture analysis
provides a more complete characterization of dense and sparse tex-
tural regions within a tumor volume of interest. As demonstrated
later, this progressive refinement process optimizes characteriza-
tion by giving a better fit to the underlying tumor speckle texture.

4. Methodology

Our goal is to derive a locally-based feature signature based on
volumetric generated Nakagami shape and scale parametric voxel
lattices, and subsequently to perform an intensity-invariant tex-
ture analysis at various spatial resolutions for tissue characteriza-
tion. This allows us to perform a more complete characterization
of tumor texture at the optimal resolution scales compared to sin-
gle or mono-resolution approaches (Al-Kadi, 2009). The proposed
volumetric dense-to-sparse approach can break-down the speckle
complexity and provide a robust estimation of model parameters,
while having the advantage of simultaneously localizing both large
high-contrast and small low-contrast structures at low and high
spatial resolution levels.

4.1. Nakagami probabilistic distribution

The Nakagami distribution N(x) is an analytically simple distri-
bution that has been proposed as a general model for the ultrasonic
backscattered envelope under all scattering conditions and scat-
terer densities (Shankar, 2000). This distribution has the density
function:

Nðxjl;xÞ ¼ 2
l
x

� �l 1
C lð Þ x

2l�1ð Þe�
l
xx2
; 8x 2 R P 0 ð1Þ

where x is the envelope of the RF signal, with the shape of the dis-
tribution defined by the l parameter corresponding to the local
concentration of scatterers, and the local backscattered energy rep-
resented by the scale parameter x i 0, for x > 0, and C �ð Þ is the
Gamma function. If x has a Nakagami distribution N with parame-
ters l and x, then x2 has a Gamma distribution C with shape l
and scale (energy) parameter x/l.

The Nakagami distribution can model various backscattering
conditions in medical ultrasound. By varying l, the envelope sta-
tistics range from pre-Rayleigh l < 1ð Þ, Rayleigh 0 < l < 0:5ð Þ,
and to post-Rayleigh l > 1ð Þ. The Nakagami parameters are gener-
ally estimated by the 2nd and 4th order moments, where given x is
the ultrasonic backscattered envelope and E �ð Þ denotes the statisti-
cal mean, the two Nakagami parameters can be calculated as:

x ¼ E x2� �
; and l ¼

E x2
� �2

Var x2ð Þ ¼
E x2
� �2

E x4ð Þ � E x2ð Þ2:
ð2Þ
4.2. Volumetric multi-scale Nakagami modeling

A 3D feature signature that operates locally is defined by having
each volume V consisting of z acquired slices Ii : i ¼ 1; . . . ; zf g sub-
divided into voxel lattices v i, each having a defined size of m and n,
where v ¼ vkljk; l 2 Vf g for k ¼ 1; . . . ;m; l ¼ 1; . . . ;n, such thatS

klvkl ¼ V . For each v i we assume that for a scaling factor r at a
specific spatial scale s, the scaled voxel intensity lattice values
v i

klr of the RF envelope amplitude Aklr such that Aklr ¼ vklrð Þr2Rs
,

where the different possible resolution levels
Rs : r ¼ 1; . . . ; s; . . . ; j reaching to the maximum level j represent
a stochastic pattern, and the envelope amplitude of the scales r
of v i

klr follows a Nakagami distribution. Given the large number
of voxel samples to analyze and the known family of probability
distributions, the maximum likelihood estimators would tend to
have a higher probability of being close to the quantities to be esti-
mated and more often unbiased as compared to moments-based
estimation (Cheng and Beaulieu, 2001), therefore the associated
shape and scale parameters were estimated via maximum likeli-
hood estimation (MLE) by operating on each voxel lattice region
and at different scales. The maximum likelihood estimate ĥ vð Þ
for a density function f v1

111; . . . ;vz
mnjjh

� �
when h is a vector of

parameters for the Nakagami distribution family H, estimates

the most probable parameters ĥ vð Þ ¼ argmaxh D hjv1
111; . . . ;vz

mnj

� �
,

where D hjvð Þ ¼ f v jhð Þ; h 2 H is the score function. Having
generated voxel-based Nakagami parameters, 3D wavelet packet



O.S. Al-Kadi et al. / Medical Image Analysis 21 (2015) 59–71 63
Daubechies analysis (Mallat, 1999) can be applied at multiple
scales. Namely:

Wu t0; x; y; zð Þ ¼ 1ffiffiffiffiffiffiffiffiffi
mnj

p Xj�1

r¼0

Xn�1

l¼0

Xm�1

k¼0

vklruklr t0; x; y; zð Þ; ð3Þ

Wi
w t; x; y; zð Þ ¼ 1ffiffiffiffiffiffiffiffiffi

mnj
p Xj�1

r¼0

Xn�1

l¼0

Xm�1

k¼0

vklrw
i
klr t; x; y; zð Þ; ð4Þ

where vklr 2 L2
Rð Þ is relative to scaling uklr and wavelet function

wklr and Wu t0;m;nð Þ defines an approximation of vklr at scale t0,
and Wi

w t;m;nð Þ coefficients add horizontal, vertical and diagonal
details for scales t P t0. The Daubechies wavelet family can account
for self-similarity and signal discontinuities, making it one of the
most useful wavelets for characterizing signals exhibiting fractal
patterns (Daubechies, 1990). In our case an orthogonal 8-tap
Daubechies filter was used to obtain the wavelet packets by
expanding the basis having the most significant fractal signature
rather than energy.

An octant wavelet transform depends mainly on the scaling
h0 kð Þ and wavelet h1 kð Þ filters for image decomposition, and one
does not need to express the uklr and wklr in their explicit form.
The decomposition process can be viewed as passing the signal
through a pair of lowpass Lð Þ and highpass Hð Þ filters, also known
as quadrature mirror filters, having impulse responses ~h0 kð Þ and
~h1 kð Þ, while holding the size of the transformed image the same
as the original image as we are applying an overcomplete wavelet
representation; hence giving a better representation of the texture
characteristics at each decomposition. The impulse responses of L
and H are defined as ~h0 að Þ ¼ h0 �að Þ and ~h1 að Þ ¼ h1 �að Þ for scaling
parameter a, and ~h0 bð Þ ¼ h0 �bð Þ and ~h1 bð Þ ¼ h1 �bð Þ for translation
parameter b, where a; b 2 Z. The decomposition is performed
recursively on the output of ~h0 að Þ; ~h1 að Þ and ~h0 bð Þ; ~h1 bð Þ. Hence,
the 3-D wavelet (or octant wavelet packet) can be expressed by
the tensor product of the wavelet basis functions along the hori-
zontal, vertical and depth directions. The corresponding filter coef-
ficients can be recursively decomposed by a factor of eight as
illustrated in Fig. 4 and expressed in (5), with subscripts indicating
the low and high pass filtering characteristics in the m; n and j
directions:
Fig. 4. Multiresolution volumetric modeling showing the decomposition up to 3 hier
corresponding decomposition tree (middle).
hLLL a; bð Þ ¼ h0 að Þh0 að Þh0 bð Þ; hLHL a; bð Þ ¼ h0 bð Þh1 að Þh0 bð Þ;
hLLH a; bð Þ ¼ h0 að Þh0 að Þh1 bð Þ; hLHH a; bð Þ ¼ h0 bð Þh1 að Þh1 bð Þ;
hHLL a; bð Þ ¼ h1 bð Þh0 að Þh0 bð Þ; hHHL a; bð Þ ¼ h1 að Þh1 að Þh0 bð Þ;
hHLH a; bð Þ ¼ h1 bð Þh0 að Þh1 bð Þ; hHHH a; bð Þ ¼ h1 að Þh1 að Þh1 bð Þ: ð5Þ

By decomposing the approximation coefficients of the signal as
well, the wavelet transform can be extended in the middle and high
frequency channels, providing a more complete partitioning of the
spatial-frequency domain, which is known as the octant wavelet
packet transform (Coifman and Wickerhauser, 1992). As the tex-
tural information about the structural arrangement of surfaces
and their relationship to the surrounding neighborhood is spread
across the frequency sub-bands, most of the important discriminant
features related to the structure terminations and endpoints of sur-
face edges will have a stronger response in higher frequencies (Al-
Kadi, 2009). Thereby, this gives an equal opportunity for investigat-
ing descriptors of textural features prevailing in the middle and
high frequency bands.

From a pattern recognition perspective, the selection of the
most suitable wavelet is associated with the understanding of
the tissue textural properties and synthesis wavelet. Wavelet anal-
ysis using Daubechies wavelet basis functions can achieve a good
spatial-frequency localization by having narrow high and wide
low frequencies simultaneously. With the increasing number of
zero or vanishing moments – which are half the number of filter
taps N – this can give a sparse representation for a large class of
signal types. Also the Daubechies orthogonal wavelet family con-
sists of purposefully designed filters which account for self-simi-
larity and signal discontinuities, making them one of the most
useful wavelets for characterizing signals exhibiting fractal pat-
terns. Besides, they are also considered to be sensitive in recogniz-
ing fine characteristic structures, and its application of overlapping
windows, unlike other wavelets such as the Haar wavelet, facili-
tates the capture of all high frequency changes easily (Mallat,
1999). As our work is concerned with the estimation of texture sur-
face roughness from a fractal dimension perspective, the choice of
this wavelet is more suitable than other wavelet families
(Daubechies, 1992). Therefore an orthogonal 8-tap Daubechies fil-
ter (Daubechies, 1990) in a tree structure decomposition is used to
archical levels by recursive subdivision of volume into octants voxels (left) and
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obtain the wavelet packets by expanding the basis having the most
significant fractal signature, see Fig. 5. This approach gives flexibil-
ity to finely tune the signal to the characteristic intrinsic properties
of an image (Wang and Yong, 2008).

4.3. Multi-fractal textural model

Fractals can be used in tissue characterization to describe irreg-
ular structures that exhibit semi self-similarity at different scales,
and can further give an estimation of surface roughness (in our case
of the RF envelope surface). There are several fractal models used to
estimate the fractal dimension (FD); the FD can be estimated via the
fractal Brownian motion (fBm) defined in (6) below, which is a non-
stationary model known for its capability for describing random
phenomena (Lopes and Betrouni, 2009). Its statistical invariance
to dilation, translation and rotation, can mitigate multiplicative
speckle scale changes, making it a perfect candidate to be integrated
with the Nakagami modeling and multi-resolution decomposition:

E Dvð Þ ¼ KDrH ð6Þ

where E Dvð Þ ¼ qi � pj

�� ��; j ¼ 1; . . . ; k is the mean absolute difference

of voxel pairs Dv ; Dr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 qi � pið Þ2
q

where n = 3 for 3-D space, is

the voxel pair distances; H is called the Hurst coefficient; and the
constant K i 0.

4.3.1. Fractal map estimation
After application of the Daubechies 3D wavelet analysis, the

roughness of each voxel lattice surface is determined via estimat-
ing its corresponding FD. The estimated voxel-by-voxel array of
fractal dimensions for each voxel lattice, which we call a fractal
map, provides a basis for characterizing the tissue and for building
a bag-of-words of fractal features as a 3D feature descriptor.

A multi-dimensional matrix Nxyd defined for each of the tumor
voxels vklr is derived at different range scales r, such that the mean
absolute difference of each voxel pair Dv and for each voxel pair
distances Dr are estimated. Thereby the first dimension d repre-
sents the voxel after it has been scaled once, and the second
dimension represents the voxel at scale 2, and so on until the high-
est scale j is reached.

Nxyd ¼

v i
11d v i

12d � � � � � � v i
1Nd

v i
21d v i

22d � � � � � � v i
2Nd

..

. ..
. . .

. ..
.

..

. ..
. . .

. ..
.

v i
M1d v i

M2d � � � � � � v i
MNd

0BBBBBBBB@

1CCCCCCCCA
ð7Þ
Fig. 5. Normalized Daubechies’ orthogonal wavelet showing scaling (father) /ðtÞ and w
level Daubechies wavelet decomposition for a liver tumor volume of interest showing
respectively.
where M and N are the size of each ultrasound image slice and
d ¼ 1; . . . ; j is the resolution limits of matrix Nxyd which represents
the mean absolute intensity difference to center voxels, and i stands
for Nakagami shape l and scale x parametric images. Then each
element from each array in Nxyd is normalized after taking the log-
arithm and saved in a mean absolute difference row vector Dv̂ . That
is, the first element in all arrays of Nxyd will compose vector Dv̂1, and
all second elements will compose vector Dv̂2, and so on as shown in
(8). This process is illustrated in Fig. 6.

Dv̂1

Dv̂2

Dv̂3

..

.

Dv̂M�N

0BBBBBBB@

1CCCCCCCA ¼ log
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Dv̂ i
111k k
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11j
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��� ���
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ð8Þ

The slope – which corresponds to the Hurst coefficient H – of
the least square linear regression line of the log–log plot of Dv̂ ver-
sus Dr̂ can be determined by means of sums of squares as in (9).

Srr ¼
Xj�1

i¼1

Dr̂2
i �

Pj�1
i¼1Dr̂i

� �2

j�1
; Srv ¼

Xj�1

i¼1

Xj�1

k¼1

Dr̂iv̂k�
Pj�1

i¼1Dr̂i

� � Pj�1
k¼1Dv̂k

� �
j�1

ð9Þ

Finally, the slope of the linear regression line defines the textural
fractal characteristics, which we call the fractal map I:

I ¼ 3� Srv

Srr
¼

H11 H12 � � � � � � H1N

H21 H22 � � � � � � H2N

..

. ..
. . .

. ..
.

..

. ..
. . .

. ..
.

HM1 HM2 � � � � � � HMN

0BBBBBBB@

1CCCCCCCA
ð10Þ
4.3.2. Volume of interest refinement
It is important to estimate the Nakagami model parameters

with good accuracy, but still have a simple model that is easy to
interpret. Estimation from small cuboids of interest can provide
poor estimation of the Nakagami parameters (Larrue and Noble,
2014). Larger volumes have more data points to fit allowing for
averaging of random error, yet this might not be good for tumors
avelet (mother) wðtÞ functions with 4 vanishing moments, and corresponding first
from left to right the approximation, horizontal, vertical, and diagonal coefficients,



Fig. 6. Overcomplete multi-scale volumetric Nakagami tumor regions; the small m� n� i voxel lattice centered on the localized voxel vklr , where k; l, and r are the voxel
position on the lattice for scale r, is convolved with larger voxels up to j resolution levels for estimation of the mean absolute difference of voxel pairs matrix.

Fig. 7. Segmented liver tumor volume of interest; and the annotation squares in the
enlarged image show the variation of voxel lattice size used in the experiments.

Fig. 8. Goodness of fit for optimizing the voxel lattice size utilized in the Nakagami
distribution fitting.
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with relatively small size. In order to balance the trade off, volume
reconstruction was designed to eliminate 2D tumor slices with low
information content in order to provide a good characterization of
tumor textural patterns.

In practice, as a tumor grows it tends to adopt a non-uniform
shape. This will cause sections in the acquired tumor volume to
have a relatively small area compared to the whole tumor, where
the texture patterns within these small regions cannot be reliably
extracted. Therefore removal of these small regions will not only
assist in reducing irrelevant features, computational time and
memory, but will also direct the efforts of the developed feature
descriptor to focus on characterizing the tumor patterns provided
in large volume. The selection of volume slices was performed such
that Ai > eAm, where Ai is the tumor area in slice i ¼ 1; . . . ;m; . . . ; z,
and eAm is the slice m with the median area size.
Another important design decision is the selection of the size of
the lattice utilized in Nakagami distribution estimation which is
ideally performed automatically. To address this, a varying size
voxel lattice was introduced as illustrated in Fig. 7 to measure
the goodness of fit for the estimated Nakagami model parameters.
For error of fit we used the estimated root mean square error
(RMSE) between the MLE-estimated Nakagami values xmle and
the observed voxels values in each voxel lattice xv starting at size
2, as there would be no meaning if a lattice had a size of 1. The
RMSE was thus defined as:
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
s¼2 xmle � xvð Þ2

n
:

s
ð11Þ

Fig. 8 is an empirical plot of the goodness of fit of the estimated
Nakagami parameters versus voxel lattice size for a typical dataset.
Sizes varying from 0.03 mm3 to 6.60 mm3 where used in the exper-
iments. The RMSE oscillates as it reaches its minimum, recording a
residual error of 0.68 at a lattice size of 7 voxels before the accuracy
starts to decrease for larger sizes. Also in the process of generating
the Nakagami parametric images and when the voxel lattice hap-
pen to be on the border, all voxels laying outside the volume of
interest are eliminated from the calculations in order to discard
any bias and to maintain a more credible estimation of the
parameters.
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4.3.3. Feature selection optimization
The ultrasound texture fractal maps representing the FD voxel-

based signature for the estimated Nakagami shape and scale para-
metric images are shown in Fig. 9(e) and (f), respectively. Various
wavelet decomposition techniques apply the sub-bands’ energy
for decomposition which is susceptible to intensity variations in
ultrasound images due to speckle; however, the local density func-
tion known as the FD, can instead overcome these local variations
in voxel intensities as it gives a representation of texture surface
roughness, and hence is employed for the multiresolution analysis.
The fractal characteristics are estimated for all sub-bands at each
level of the wavelet packet decomposition, where the FD is com-
puted on a voxel-by-voxel basis to produce a fractal map I for each
sub-band i.e., each voxel in the fractal map has its own localized FD
value estimated from its neighborhood as described in the previous
section, where the rougher the surface the higher the FD values get,
and vice versa. Features at boundaries are computed after assum-
ing that each slice is mirror-like continually extended in both
directions. Specifically, the fractal features f i;j for a specific sub-
band j to a certain level of decomposition i represent the average
value of the generated M � N fractal image map I of a volume of
interest k as defined in Eq. (12).

f k
i;j ¼

1
MN

XMN

r¼1

Ir ð12Þ

This local estimation gives a more reliable estimation compared
to a single global value. Finally, the optimized multi-fractal feature
vector descriptor consists of all selected sub-band fractal feature
signatures f in each volume of interest k, expressed as K ¼

S
kkk,

where kk ¼ f 1
1;1; . . . ; f k

i;j; . . . ; f z
m;n

n o
.

In order to save processing time, the dimensionality of the
extracted feature vector is reduced by applying a differential
threshold which eliminates weak FD signatures. The threshold is

defined by the condition 8 f k
iþ1;j � f k

iþ1;jþ1

��� ��� 2 K
� �

6 Df such that

the FD signature absolute difference of the previous decomposition

level Df ¼ f k
i;j � f k

i;jþ1

��� ��� is satisfied, then the decomposition should

terminate. The new 3D multi-fractal Nakagami feature descriptor
is abbreviated subsequently as MNF, and its estimation summa-
rized in the following pseudo code:

Algorithm 1. Multifractal Nakagami feature descriptor estimation

Input: Volumetric ultrasound images I, volume of interests
from each volume I: Ii ¼ x1; y1; z1; . . . ; xLn ; yLn

; zLn

� �	 

,

segmented volume of interests: Vsf gZ
s¼1.

Output: multifractal feature descriptor KðkÞf

n o
1: for all Segmented volumes of interest V1 ! VZ do

2: {Step 1} //subdivide each volume of interest Vl into

voxel lattices v i.
3: for all Voxel lattices v1

111 ! vz
mnj do

4: Fit with a Nakagami distribution

Nðxjl;xÞ ¼ 2 l
x
� �l 1

C lð Þ x
2l�1ð Þ

5: {Step 2} //calculate Nakagami shape l and scale x

parameters using maximum likelihood estimation as:

ĥ vð Þ ¼ argmaxh D h=v1
111; . . . ;vz

mnj

� �
where h is a vector of parameters for the Nakagami

distribution family f v1
111; . . . ; vz

mnj=h
� �
6: {Step 3}//construct Nakagami shape Nl and scale Nx

parametric array.
7: end for
8: end for
9: for all voxels v i in Nl and Nx do

10: {Step 4}//Perform Daubechies wavelet packet transform

Wu t0;x;y;zð Þ¼ 1=
ffiffiffiffiffiffiffiffiffi
mnj

p� �Pj�1
r¼0

Pn�1
l¼0
Pm�1

k¼0 vklruklr t0;x;y;zð Þ

Wi
w t; x; y; zð Þ ¼ 1=

ffiffiffiffiffiffiffiffiffi
mnj

p� �Pj�1
r¼0

Pn�1
l¼0
Pm�1

k¼0 vklrw
i
klr t; x; y; zð Þ

11: {Step 5}//multifractal estimation and optimization

phase
12: for all decomposition levels i do

13: for all voxels v i
mnr in Wu and Wi

w do

14: for all voxel pair distances Dr in Wu and Wi
w do

15: compute mean absolute difference Dv of each
voxel pair qi; pi

16: {Step 6}//construct a multidimensional volume of

interest matrix Ndðx; y; dÞ
17: normalize and take the logarithm

Dv̂ ¼ log Dv i
mnr= Dv i

mnr

�� ��� �
,

where m; n and r are the size of a voxel i at a certain scale
18: normalize voxel pairs distances Dr̂ where

Dr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 qi � pið Þ2
q

19: perform least square linear regression as

Srr ¼
Pj�1

i¼1Dr̂2
i �

Pj�1
i¼1Dr̂i

� �2
=ðj� 1Þ ,

Srv ¼
Pj�1

i¼1

Pj�1
k¼1Dr̂iv̂k �

Pj�1
i¼1Dr̂i

� � Pj�1
k¼1Dv̂k

� �
=ðj� 1Þ

20: estimate the Hurst coefficient H matrix which
represents the slope H ¼ Srv=Srrð Þ

21: estimate the fractal map I ¼ 3� H
22: end for
23: end for

24: extract mean fractal dimension f k
i;j  1=MNð Þ

PMN
r¼1Ir

where kk ¼ f 1
1;1; . . . ; f k

i;j; . . . ; f z
m;n

n o
25: construct feature descriptor from all wavelet sub-

bands K ¼
S

kkk

26: f k
iþ1;j � f k

iþ1;jþ1

��� ���
27: repeat

28: {Step 7}//determine fractal absolute difference

between decomposition level i and subsequent level as:

Dk
i ¼ f k

i;j � f k
i;jþ1

��� ���,
Dk

iþ1 ¼ f k
iþ1;j � f k

iþ1;jþ1

��� ���
29: until Dk

iþ1 6 Dk
i

30: end for
31: end for
32: return optimized multifractal feature vector:

KðkÞf  argmax kkð Þ
5. Experiments

This section describes experiments on pre-clinical and clinical
images to illustrate the new MNF algorithm and to compare its
characterization performance with previous single scale methods.
A tumor was classified as non-progressive if categorized as partial
response and progressive if no change or disease demonstrated
non-responsiveness. The response evaluation criteria in solid



Fig. 9. Example of a voxel-based tissue characterization for a non-progressive liver tumor case. The tumor 3D volume is reconstructed in (a), and the B-mode middle slice (b)
after transforming using the MNF algorithm is shown in (c–f). The Nakagami shape and scale parametric voxels (c) and (d) and the corresponding multi-resolution fractal slice
maps (e) and (f) illustrates how the case responds to chemotherapy treatment – the blue color regions in (e) and (f) which correspond with the RECIST criteria. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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tumors (RECIST) was adopted to categorize the cases into progres-
sive versus non-progressive (Eisenhauer et al., 2009). The baseline
cross-sectional imaging was compared against those performed at
the end of treatment according to the RECIST criteria to determine
response to treatment for each target tumor.

5.1. Data

5.1.1. Pre-clinical data: xenograft tumor imaging protocol
RF ultrasound data was acquired using a diagnostic ultrasound

system (z.one, Zonare Medical Systems, Mountain View, CA, USA)
with a 10 MHz linear transducer and 50 MHz sampling. The output
2D image size was 20� 54 mm with a resolution of 289� 648 pix-
els. A total of 227 cross-sectional images of hind-leg xenograft
tumors from 29 mice (20 progressive or stable disease and 9
non-progressive disease) were obtained with 1 mm step-wise
movement of the array mounted on a manual positioning device
until the whole tumor volume was imaged (Fig. 4). All studies were
ethically approved and performed in line with UK Home Office reg-
ulations, and in accordance with personal and project licenses.

The 2D images were composed together to create a 3D ultra-
sound volume. In order to ensure that nearby healthy tissue is
not included in tumor tissue characterization, two expert radiolo-
gists manually segmented each image prior to applying tissue
characterization. The Nakagami distribution was fitted to the dis-
tributions in each voxel lattice and parametric volumes were gen-
erated for each tumor.

The complete 3D RF ultrasound dataset along with a description
of case categorization can be downloaded from the following
weblink url: https://ibme-web.eng.ox.ac.uk/livertumour. An exam-
ple of one of the cases presented as an animated GIF for the fractal
slice maps and a video of the corresponding fractal volume map
can be found with the dataset.

5.1.2. Clinical data: clinical study imaging protocol
Cross-sectional images of liver tumors undergoing chemother-

apy treatment obtained as part of an ethically approved prospec-
tive study was used to validate our proposed technique. A total
of 394 cross-sectional images (186 from tumors demonstrating
partial response categorized as non-progressive, and 208 from
tumors demonstrating progressive disease categorized as progres-
sive) were obtained using a diagnostic ultrasound system (z.one,
Zonare Medical Systems, Mountain View, CA, USA) with a 4 MHz
curvilinear transducer and 11 MHz sampling. Each dataset was
acquired prior to commencement of chemotherapy. Response to
treatment was determined based on conventional computed
tomography follow up imaging as part of the patient standard clin-
ical care according to the RECIST criteria (Eisenhauer et al., 2009).

The transducer beam was initially directed through the target
liver tumor in the intercostal imaging plane. Patients were asked
to maintain breath hold inspiration, in order to stabilize the tumor
target during image acquisition. Using a smooth movement of
approximately constant speed, the ultrasound probe was angled
whilst maintaining a skin contact position in a cranial to caudal
direction to capture sequential 2D cross-sectional images of the
target liver tumor. Each output 2D image size was 65� 160 mm
with a resolution of 225� 968 pixels. Similar to the xenograft
tumor dataset, the 2D images were composed together to create
a 3D ultrasound volume for each target tumor. The acquisition
was repeated in a similar fashion three times at each time point.
Manual segmentation of the liver tumor was also performed in a
similar fashion prior to image texture analysis.

5.2. Fractal maps

Fig. 9 shows the new parametric mapping on an example case.
The various scattering conditions related to tissue characteristics
within the tumor texture are shown using color mapping, where
the various intensity distributions corresponding to the local con-
centration of scatterers vary from pre-Rician (0 < l < 0.5), general-
ized Rician (l = 0.5), pre-Rayleigh (0.5 < l < 1), Rayleigh (l = 1),
post-Rayleigh (l > 1) as illustrated in Fig. 9(c), and from low
(0 < x < 3), mid (3 6x < 7), and high (x > 7) for local backscat-
tered energy as in Fig. 9(d). The MNF fractal slice maps – which cor-
respond to each slice in the reconstructed volume – shown in
Fig. 9(e) and (f) correspond to the Nakagami shape and scale voxels

http://https://ibme-web.eng.ox.ac.uk/livertumour
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of the mid-slice, respectively. Regions with different texture prop-
erties (smoother or with lower local fractal dimension values)
become more apparent compared to the Nakagami parametric
voxels. Another interesting point is that the scale fractal map high-
lights the low activity regions near to the edge of the tumor, while
the shape fractal map complements the characterization by high-
lighting low activity regions belonging to the inner part of the
tumor tissue texture. A holistic view of the overall progression or
regression of tumor spread can be effectively revealed via the frac-
tal volume maps where low activity regions which correspond to
necrotic tissue are labeled by a dark red color as illustrated in
Fig. 10. Also a comparison between a non-progressive and progres-
sive case and for pre and post-chemotherapy treatment is shown in
Fig. 11.

5.3. Statistical analysis

Since our primary concern is to demonstrate the texture expres-
siveness of the new multi-fractal feature descriptor in this subsec-
tion we describe experiments conducted to compare the
discriminative power of the MNF descriptor with established fea-
tures for mass classification. To do this we have chosen to use a
naïve Bayesian classifier, although SVM or random forests might
also have been used.

Specifically, we consider the MNF KðkÞ estimated over multiple
scales in each case k in which there are KðkÞ

��� ��� ¼ 8� i features per
voxel, where i is the number of decomposition levels estimated
adaptively (see step 7 in Algorithm 1). This feature vector was
fed into a simple naïve Bayesian classifier (nBC) determine perfor-
mance of classifying progressive versus non-progressive cases.

Fig. 12 summarizes classification results for the pre-clinical
dataset using the proposed MNF features with results from six
other classic filter, model and statistical-based texture analysis
methods and for B-mode intensity and Nakagami-based volumes
of interest. The compared texture analysis methods are: Gabor fil-
ter (GF), fractional Brownian motion (fBm), Gaussian Markov
random field (GMRF), gray-level co-occurrence matrix (GLCM),
Fig. 10. Fractal volume maps: Volumetric rendering of Nakagami parametric scale (firs
volume, respectively.
run-length matrix (RLM), and autocovariance function (ACF).
Details of the extracted features can be found in Table 1, and a
leave-one-out validation approach was employed. MNF-based per-
formance gave the best overall cross-validation accuracy of 98.95%.
Also the Wilcoxon Signed-Rank test on paired accuracy in Naka-
gami and intensity-based of each subject for both two-class classi-
fication shows that there is a significant difference (p < 0:05).

5.4. Clinical application

In order to demonstrate the applicability of the MNF algorithm
for analysis of data acquired to clinical protocol the new method
was applied to a clinical liver tumor dataset. In this case, RF ultra-
sound data is acquired in a fan-like scanning protocol (cf. the pre-
clinical dataset was acquired using a linear transducer) in which a
series of 2D images are collected as the transducer is tilted and
then reconstructed into a 3D image.

Table 2 summarizes the classification performance for the clin-
ical dataset following the same classifier design as in Section 4.3.
The results show a good classification accuracy of 92.90% using a
leave-one-out cross-validation approach, and a 92.01% ± 0.50 and
92.60 ± 0.30 for 5-fold and 10-fold cross-validation (results are
the mean ± standard deviation of the performance over 60 runs).
The texture descriptor was also compared against the RF backscat-
ter signal using the localized voxel-based Nakagami parameters
without generating the fractal volume maps (see Table 3), and by
only deriving the fractal maps directly from the intensity (B-mode)
images as well (see Table 4).

6. Discussion

An outstanding challenge in medical ultrasound image analysis
addressed in the paper is to provide an efficient characterization of
subtle speckle textural changes or intra-heterogeneity within
tumor tissue. The low signal to noise ratio and imaging artifacts
frequently present in clinical ultrasound images make extracting
such diagnostically useful information hard. In this section we
t row) and shape (second row) for a progressive and non-progressive liver tumor



Fig. 11. Pairwise horizontal comparison of texture-based volume rendering of Nakagami scale (a–d) and shape (e–h) multi-fractal volume maps. (a) and (b) Are an example of
a non-progressive case in pre and post-chemotherapy treatment, and the (c) and (d) are for a progressive case in pre and post-chemotherapy treatment, respectively; (e) and
(f), and (g) and (h) are the corresponding volumetric Nakagami shape cases. Red color labels indicate low local fractal dimension or low-activity regions which correspond to
necrotic regions according to RECIST criteria. In first row, it is noticed that the spread of the red voxels has increased in post-treatment as compared to pre-treatment, and vice
versa in the second row. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Features extracted from the comparative texture analysis methods in Fig. 12.

Method Texture features

GF Energy of each magnitude response for five radial frequencies
ffiffiffi
2
p

=26;
ffi
2
p�

GMRF Seven features estimated from a third order Markov neighborhood model
fBm Mean, variance, lacunarity, skewness and kurtosis derived from the genera
GLCM Contrast, correlation, energy, entropy, homogeneity, dissimilarity, inverse d

45�, 90� and 135� directions
RLM Short run emphasis, long run emphasis, gray level non-uniformity, run len

90� and 135� directions
ACF Peaks of the horizontal and vertical margins values and associated expone

Fig. 12. Performance comparison for the MNF method against the filter-based
Gabor filter (GF), model-based fractional Brownian motion (fBm) and Gaussian
Markov random field (GMRF), and statistical-based gray-level co-occurrence matrix
(GLCM), run-length matrix (RLM), and autocovariance function (ACF) texture
analysis methods. The blue columns represent the operation of the texture
descriptors on volumetric Nakagami parametric volume of interests, while the
red columns are results from conventional ultrasonic intensity B-mode volume of
interests. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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focus on discussing three main contributions of our work and their
importance.

(1) Features of the method which make it novel and how this makes
a difference: We have proposed a novel and meaningful frac-
tal feature vector representation of ultrasonic signal charac-
terization across spatial scales. This uses a multi-scale
analysis where the voxel lattice is optimized to tumor size.
We have also shown that performing the estimation in a vol-
umetric fashion improves classification accuracy.
The proposed MNF approach simplifies analysis of the higher
order statistics of the speckle texture via investigating differ-
ent sub-bands at various decomposition levels using wave-
lets that tend to exhibit fractal characteristics. The tailored
spatial-frequency localization provided via the Daubechies
wavelet can facilitate the subsequent measurement of (sig-
nal) surface roughness while simultaneously filtering out
irrelevant speckle features. The resulting fractal features
quantify the speckle texture. Unlike conventional sub-band
energy decomposition, sub-resolution level probing via the
ffiffi
=25;

ffiffiffi
2
p

=24;
ffiffiffi
2
p

=23;
ffiffiffi
2
p

=22
�

with 4 orientations 0�, 45�, 90� and 135�

ted FD image
ifference momentum, maximum probability statistical features derived in the 0�,

gth non-uniformity and run percentage statistical features derived in the 0�, 45�,

ntial fittings of the ACF



Table 2
Detailed classification performance for the 3D clinical RF ultrasound liver tumor test
set using the MNF algorithm.

Classification performance Cross-validation

Loo 5-fold 10-fold

Recall 0.935 0:92� 0:919 0:921� 0:931
FP rate 0.065 0:08� 0:080 0:069� 0:079
Accuracy 0.929 0:92� 0:005 0:926� 0:003
Precision 0.941 0:93� 0:911 0:937� 0:914
F-measure 0.928 0:92� 0:005 0:925� 0:003
J-Index 0.929 0:92� 0:005 0:926� 0:003
Dice SC 0.963 0:96� 0:003 0:961� 0:002
ROC Area 0.929 0:92� 0:006 0:926� 0:003

Table 3
Detailed classification performance for the 3D clinical RF ultrasound liver tumor test
set using only the Nakagami parameters.

Classification performance Cross-validation

Loo 5-fold 10-fold

Recall 0.715 0:73� 0:492 0:72� 0:491
FP rate 0.514 0:51� 0:272 0:51� 0:276
Accuracy 0.594 0:60� 0:007 0:60� 0:006
Precision 0.656 0:56� 0:670 0:56� 0:666
F-measure 0.595 0:60� 0:007 0:60� 0:006
J-Index 0.594 0:60� 0:007 0:60� 0:006
Dice SC 0.745 0:75� 0:005 0:75� 0:005
ROC Area 0.600 0:61� 0:007 0:61� 0:006

Table 4
Detailed classification performance using B-mode images of the 3D clinical ultra-
sound liver tumor test set.

Classification performance Cross-validation

Loo 5-fold 10-fold

Recall 0.823 0:82� 0:870 0:82� 0:868
FP rate 0.135 0:13� 0:182 0:13� 0:180
Accuracy 0.845 0:85� 0:005 0:85� 0:004
Precision 0.845 0:85� 0:842 0:85� 0:844
F-measure 0.845 0:85� 0:005 0:85� 0:004
J-Index 0.845 0:85� 0:005 0:85� 0:004
Dice SC 0.916 0:92� 0:003 0:92� 0:002
ROC Area 0.844 0:84� 0:005 0:84� 0:004
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fBm (which satisfies an affine intensity invariance property)
is not susceptible to sudden changes in the speckle intensity
spatial frequency distribution.

(2) Significance of the MNF descriptor to describe cancer morphol-
ogy at the image level: The results in Section 4 are very inter-
esting as they suggest that the MNF representation provides
a new way to visualize cancer morphology using an ultra-
sound-based descriptor, and specifically to partition cancer-
ous masses into necrotic and non-necrotic areas which has
potential clinical utility.
In particular, the sparse blue colored clusters – which corre-
spond to the low fractal dimension values shown in Fig. 9(e)
and (f) – appear to correspond to necrotic regions in the
tumor that are beginning to respond to chemotherapy treat-
ment as defined by the RECIST criteria. This can be explained
by first noting that tumorous tissue tends to have a
‘‘rougher’’ appearance than non-tumorous tissue due to the
chaotic way that tumors build their network of new blood
vessels. These angiogenesis networks tend to be leaky and
disorganized, unlike blood vessel vasculature in normal tis-
sue. This heterogeneity introduces a degree of randomness
in appearance or ‘‘roughness’’ and gives a higher fractal
dimension value compared to necrotic tissue.
Necrotic regions have different echogenicity characteristics
(Sadeghi-Naini et al., 2013). In a necrotic region there is no
cell growth and hence could be quantified if investigated
at the appropriate analysis scale. The fractal volume maps
reveal some of the intra-heterogeneity regions that tend to
have a different textural characteristics to that of tumor tis-
sue. These observations correspond to the dark red voxels in
Fig. 10 and in Fig. 11 in the post-chemotherapy case. The red
voxels in the pre-treated tumors in Fig. 11(a) and (c) repre-
sent regions with low activity, i.e. non-aggressive, with
potential to become aggressive after treatment. We consider
these red voxels as suspicious regions within the tumor and
not as active as the rest of the malignant tumor tissue. From
a pattern recognition perspective, the red voxels are closer in
terms of their surface roughness characteristics to necrotic
(i.e. low fractal dimension values) rather than aggressive
regions (i.e. high fractal dimension values). However, at
the pre-treatment stage, the nature of these regions is not
yet confirmed since the tumor has not been subjected to
chemotherapy treatment. The different shades of red in the
pre-treatment figures reflect the varying degree of low activ-
ity that exists in the tumor. Subsequently, and after the first
session of chemotherapy treatment, we notice that increase
in these low activity regions in the non-progressive tumor of
Fig. 11(b). Since the tumor has responded to treatment, we
can now be confident that the aforementioned low activity
regions in fact refers to necrotic regions. Conversely, the
red voxels seen on the pre-treatment images for the tumor
that progressed post chemotherapy nearly disappears on
the post-treatment images of Fig. 11, thus suggesting that
they have now become aggressive resulting in progression
of the tumor.
We also observe that the scale and shape fractal maps tend
to complement each other, in the sense of highlighting dif-
ferent aspects of the analyzed speckle texture pattern. This
is evident when examining the Nakagami shape and scale
parametric voxels of the non-progressive case shown in
Fig. 9. Here we observe that a number of necrotic regions –
highlighted in red in Fig. 9(c) and (d) – become more appar-
ent in the corresponding fractal maps of Fig. 9(e) and (f). The
scale fractal map highlights low intra-heterogeneity regions
on the outer surface and near to the edge of the tumor. The
shape fractal map complements this by revealing most of
these low intra-heterogeneity regions belonging to the inner
part of the tumor.

(3) Expressiveness of MNF as a mass characterization feature:
Results in Fig. 12 for the pre-clinical cases show that the
MNF performed best based on Nakagami-based parametric
images reporting an accuracy of 98.95%, while the fBm
worked well on traditional B-mode intensity images with
an accuracy of 83.16%. Similarly for the clinical cases, where
under all classification performance metrics by comparing
Tables 2–4, we can see that the MNF algorithm outper-
formed both using the Nakagami parameters alone and
when texture analysis was applied to the B-mode images
as well. Moreover, we found that using a 2D single slice gave
a lower accuracy of 74.74% compared to a volumetric analy-
sis (98.95%). Furthermore, combining the texture-based
multiresolution fractal features extracted from the Naka-
gami maps via the MNF algorithm with the features
extracted from the conventional B-mode intensity images
resulted in 4.1% degradation in the overall accuracy, as com-
pared if the MNF method was employed alone. Note that in
part due the limited data available in the pilot work, we have
not looked at the benefits from a mass classification perspec-
tive of combining the MNF descriptor with other ultrasound
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tissue characterization parameters or image texture features
which would be a natural topic to explore in the future.
Finally, we comment on three limitations of the current
research which can be translated into opportunities for
future investigation. Firstly, we are currently relying on the
consensus of two radiologists to provide the gold standard
and training data. Although we have shown good results
with our current strategy, of possible concern is that the
training samples may be mislabelled. This would reduce
the accuracy of the results. Future work might look at the
significance of this and strategies for mitigation. Secondly,
fatty livers may result in attenuation of tissue properties
and it would be interesting to investigate how this affects
MNF classification accuracy. Thirdly, RF characteristics
(and hence speckle appearance) tends to differ between
ultrasound devices. It would be interesting to investigate
whether a training set from one ultrasound scanner can be
used for classification of images from a different scanner
or results are scanner specific.

7. Conclusion

A new approach for assessing tumor heterogeneity via 3D
multi-fractal multi-scale Nakagami-based feature modeling has
been presented which we believe is the first work to consider
intra-heterogeneity quantification of a cancerous mass. We esti-
mated volumetric Nakagami shape and scale parameters from
which the novel fractal descriptor is estimated. Future work will
investigate the use of the method for both staging liver tumors
and in longitudinal analysis as an image-based biomarker of tumor
growth and therapeutic response.
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