Triple DES

- Today, 56 bit DES key is too small
- Exhaustive key search is feasible
- But DES is everywhere, so what to do?
- Triple DES or 3DES (112 bit key)
- $C=E\left(D\left(E\left(P, K_{1}\right), K_{2}\right), K_{1}\right)$
- $P=D\left(E\left(D\left(C, K_{1}\right), K_{2}\right), K_{1}\right)$
- Why Encrypt-Decrypt-Encrypt with 2 keys?
- Backward compatible: $\mathrm{E}(\mathrm{D}(\mathrm{E}(\mathrm{P}, \mathrm{K}), \mathrm{K}), \mathrm{K})=\mathrm{E}(\mathrm{P}, \mathrm{K})$
- And 112 is a lot of bits

3DES

- Why not $C=E(E(P, K), K)$ instead
- Trick question - still just 56 bit key
- Why not $\mathrm{C}=\mathrm{E}\left(\mathrm{E}\left(\mathrm{P}, \mathrm{K}_{1}\right), \mathrm{K}_{2}\right)$ instead?
- A (semi-practical) known plaintext attack
- Pre-compute table of $E\left(P, K_{1}\right)$ for every possible key K_{1} (resulting table has 2^{56} entries)
- Then for each possible K_{2} compute $D\left(C, K_{2}\right)$ until a match in table is found
- When match is found, have $E\left(P, K_{1}\right)=D\left(C, K_{2}\right)$
- Result gives us keys: $C=E\left(E\left(P, K_{1}\right), K_{2}\right)$

